470 research outputs found

    Constraints on violation of Lorentz invariance from atmospheric showers initiated by multi-TeV photons

    Full text link
    We discuss the effect of hypothetical violation of Lorentz invariance at high energies on the formation of atmospheric showers by very-high-energy gamma rays. In the scenario where Lorentz invariance violation leads to a decrease of the photon velocity with energy the formation of the showers is suppressed compared to the Lorentz invariant case. Absence of such suppression in the high-energy part of spectrum of the Crab nebula measured independently by HEGRA and H.E.S.S. collaborations is used to set lower bounds on the energy scale of Lorentz invariance violation. These bounds are competitive with the strongest existing constraints obtained from timing of variable astrophysical sources and the absorption of TeV photons on the extragalactic background light. They will be further improved by the next generation of multi-TeV gamma-ray observatories.Comment: 21 pages, 4 figures. References adde

    Lorentz violation at high energy: concepts, phenomena and astrophysical constraints

    Full text link
    We consider here the possibility of quantum gravity induced violation of Lorentz symmetry (LV). Even if suppressed by the inverse Planck mass such LV can be tested by current experiments and astrophysical observations. We review the effective field theory approach to describing LV, the issue of naturalness, and many phenomena characteristic of LV. We discuss some of the current observational bounds on LV, focusing mostly on those from high energy astrophysics in the QED sector at order E/M_Planck. In this context we present a number of new results which include the explicit computation of rates of the most relevant LV processes, the derivation of a new photon decay constraint, and modification of previous constraints taking proper account of the helicity dependence of the LV parameters implied by effective field theory.Comment: v.1 56 pages, 3 figures, Invited article for Annals of Physics; v.2: 60 pages, 3 figures. Typos fixed, references added, minor editing for clarity and accuracy; discussion of fermion pair emission added. To appear in January 2006 special issue of Annals of Physic

    Astrophysics with High Energy Gamma Rays

    Get PDF
    Recent results, the present status and the perspectives of high energy gamma-ray astronomy are described. Since the satellite observations by the Compton Gamma Ray Observatory and its precursor missions have been reviewed extensively, emphasis is on the results from the ground-based gamma-ray telescopes. They concern the physics of Pulsar Nebulae, Supernova Remnants in their assumed role as the Galactic sources of Cosmic Rays, Jets from Active Galactic Nuclei, and the Extragalactic Background radiation field due to stars and dust in galaxies. Since the gamma-ray emission is nonthermal, this kind of astronomy deals with the pervasive high-energy nonequilibrium states in the Universe. The present build-up of larger and more sensitive instruments, both on the ground and in space, gives fascinating prospects also for observational cosmology and astroparticle physics. Through realistically possible further observational developments at high mountain altitudes a rapid extension of the field is to be expected.Comment: 23 pages, 11 figures. To appear in "Astronomy, Cosmology and Fundamental Physics", ed. P. A. Shaver, L. Di Lella, and A. Gimenez, Proc. ESA-CERN-ESO Symposium, Garching, March 2002. Springer-Verlag, Berlin, Heidelberg, series "ESO Astrophysics Symposia

    Future Extensive Air Shower arrays: from Gamma-Ray Astronomy to Cosmic Rays

    Full text link
    Despite large progresses in building new detectors and in the analysis techniques, the key questions concerning the origin, acceleration and propagation of Galactic Cosmic Rays are still open. A number of new EAS arrays is in progress. The most ambitious and sensitive project between them is LHAASO, a new generation multi-component experiment to be installed at very high altitude in China (Daocheng, Sichuan province, 4400 m a.s.l.). The experiment will face the open problems through a combined study of photon- and charged particle-induced extensive air showers in the wide energy range 1011^{11} - 1018^{18} eV. In this paper the status of the experiment will be summarized, the science program presented and the outlook discussed in comparison with leading new projects.Comment: Invited plenary talk at RICAP 201

    IceCube Constraints on Fast-Spinning Pulsars as High-Energy Neutrino Sources

    Full text link
    Relativistic winds of fast-spinning pulsars have been proposed as a potential site for cosmic-ray acceleration from very high energies (VHE) to ultrahigh energies (UHE). We re-examine conditions for high-energy neutrino production, considering the interaction of accelerated particles with baryons of the expanding supernova ejecta and the radiation fields in the wind nebula. We make use of the current IceCube sensitivity in diffusive high-energy neutrino background, in order to constrain the parameter space of the most extreme neutron stars as sources of VHE and UHE cosmic rays. We demonstrate that the current non-observation of 101810^{18} eV neutrinos put stringent constraints on the pulsar scenario. For a given model, birthrates, ejecta mass and acceleration efficiency of the magnetar sources can be constrained. When we assume a proton cosmic ray composition and spherical supernovae ejecta, we find that the IceCube limits almost exclude their significant contribution to the observed UHE cosmic-ray flux. Furthermore, we consider scenarios where a fraction of cosmic rays can escape from jet-like structures piercing the ejecta, without significant interactions. Such scenarios would enable the production of UHE cosmic rays and help remove the tension between their EeV neutrino production and the observational data.Comment: 23 pages, 8 figures; published in JCAP04(2016)01

    Very-high energy gamma-ray astronomy: A 23-year success story in high-energy astroparticle physics

    Full text link
    Very-high energy (VHE) gamma quanta contribute only a minuscule fraction - below one per million - to the flux of cosmic rays. Nevertheless, being neutral particles they are currently the best "messengers" of processes from the relativistic/ultra-relativistic Universe because they can be extrapolated back to their origin. The window of VHE gamma rays was opened only in 1989 by the Whipple collaboration, reporting the observation of TeV gamma rays from the Crab nebula. After a slow start, this new field of research is now rapidly expanding with the discovery of more than 150 VHE gamma-ray emitting sources. Progress is intimately related with the steady improvement of detectors and rapidly increasing computing power. We give an overview of the early attempts before and around 1989 and the progress after the pioneering work of the Whipple collaboration. The main focus of this article is on the development of experimental techniques for Earth-bound gamma-ray detectors; consequently, more emphasis is given to those experiments that made an initial breakthrough rather than to the successors which often had and have a similar (sometimes even higher) scientific output as the pioneering experiments. The considered energy threshold is about 30 GeV. At lower energies, observations can presently only be performed with balloon or satellite-borne detectors. Irrespective of the stormy experimental progress, the success story could not have been called a success story without a broad scientific output. Therefore we conclude this article with a summary of the scientific rationales and main results achieved over the last two decades.Comment: 45 pages, 38 figures, review prepared for EPJ-H special issue "Cosmic rays, gamma rays and neutrinos: A survey of 100 years of research
    corecore