3,921 research outputs found

    A Systematic Mapping Approach of 16q12.2/FTO and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study

    Get PDF
    Genetic variants in intron 1 of the fat mass- and obesity-associated (FTO) gene have been consistently associated with body mass index (BMI) in Europeans. However, follow-up studies in African Americans (AA) have shown no support for some of the most consistently BMI-associated FTO index single nucleotide polymorphisms (SNPs). This is most likely explained by different race-specific linkage disequilibrium (LD) patterns and lower correlation overall in AA, which provides the opportunity to fine-map this region and narrow in on the functional variant. To comprehensively explore the 16q12.2/FTO locus and to search for second independent signals in the broader region, we fine-mapped a 646-kb region, encompassing the large FTO gene and the flanking gene RPGRIP1L by investigating a total of 3,756 variants (1,529 genotyped and 2,227 imputed variants) in 20,488 AAs across five studies. We observed associations between BMI and variants in the known FTO intron 1 locus: the SNP with the most significant p-value, rs56137030 (8.3×10-6) had not been highlighted in previous studies. While rs56137030was correlated at r2>0.5 with 103 SNPs in Europeans (including the GWAS index SNPs), this number was reduced to 28 SNPs in AA. Among rs56137030 and the 28 correlated SNPs, six were located within candidate intronic regulatory elements, including rs1421085, for which we predicted allele-specific binding affinity for the transcription factor CUX1, which has recently been implicated in the regulation of FTO. We did not find strong evidence for a second independent signal in the broader region. In summary, this large fine-mapping study in AA has substantially reduced the number of common alleles that are likely to be functional candidates of the known FTO locus. Importantly our study demonstrated that comprehensive fine-mapping in AA provides a powerful approach to narrow in on the functional candidate(s) underlying the initial GWAS findings in European populations

    Admixture Mapping of 15,280 African Americans Identifies Obesity Susceptibility Loci on Chromosomes 5 and X

    Get PDF
    The prevalence of obesity (body mass index (BMI) ≥30 kg/m2) is higher in African Americans than in European Americans, even after adjustment for socioeconomic factors, suggesting that genetic factors may explain some of the difference. To identify genetic loci influencing BMI, we carried out a pooled analysis of genome-wide admixture mapping scans in 15,280 African Americans from 14 epidemiologic studies. Samples were genotyped at a median of 1,411 ancestry-informative markers. After adjusting for age, sex, and study, BMI was analyzed both as a dichotomized (top 20% versus bottom 20%) and a continuous trait. We found that a higher percentage of European ancestry was significantly correlated with lower BMI (ρ = −0.042, P = 1.6×10−7). In the dichotomized analysis, we detected two loci on chromosome X as associated with increased African ancestry: the first at Xq25 (locus-specific LOD = 5.94; genome-wide score = 3.22; case-control Z = −3.94); and the second at Xq13.1 (locus-specific LOD = 2.22; case-control Z = −4.62). Quantitative analysis identified a third locus at 5q13.3 where higher BMI was highly significantly associated with greater European ancestry (locus-specific LOD = 6.27; genome-wide score = 3.46). Further mapping studies with dense sets of markers will be necessary to identify the alleles in these regions of chromosomes X and 5 that may be associated with variation in BMI

    Genome-Wide Association Study Identifies Loci for Liver Enzyme Concentrations in Mexican Americans: The GUARDIAN Consortium.

    Get PDF
    ObjectivePopulations of Mexican American ancestry are at an increased risk for nonalcoholic fatty liver disease. The objective of this study was to determine whether loci in known and novel genes were associated with variation in aspartate aminotransferase (AST) (n = 3,644), alanine aminotransferase (ALT) (n = 3,595), and gamma-glutamyl transferase (GGT) (n = 1,577) levels by conducting the first genome-wide association study (GWAS) of liver enzymes, which commonly measure liver function, in individuals of Mexican American ancestry.MethodsLevels of AST, ALT, and GGT were determined by enzymatic colorimetric assays. A multi-cohort GWAS of individuals of Mexican American ancestry was performed. Single-nucleotide polymorphisms (SNP) were tested for association with liver outcomes by multivariable linear regression using an additive genetic model. Association analyses were conducted separately in each cohort, followed by a nonparametric meta-analysis.ResultsIn the PNPLA3 gene, rs4823173 (P = 3.44 × 10-10 ), rs2896019 (P = 7.29 × 10-9 ), and rs2281135 (P = 8.73 × 10-9 ) were significantly associated with AST levels. Although not genome-wide significant, these same SNPs were the top hits for ALT (P = 7.12 × 10-8 , P = 1.98 × 10-7 , and P = 1.81 × 10-7 , respectively). The strong correlation (r2  = 1.0) for these SNPs indicated a single hit in the PNPLA3 gene. No genome-wide significant associations were found for GGT.ConclusionsPNPLA3, a locus previously identified with ALT, AST, and nonalcoholic fatty liver disease in European and Japanese GWAS, is also associated with liver enzymes in populations of Mexican American ancestry

    Localization of adaptive variants in human genomes using averaged one-dependence estimation.

    Get PDF
    Statistical methods for identifying adaptive mutations from population genetic data face several obstacles: assessing the significance of genomic outliers, integrating correlated measures of selection into one analytic framework, and distinguishing adaptive variants from hitchhiking neutral variants. Here, we introduce SWIF(r), a probabilistic method that detects selective sweeps by learning the distributions of multiple selection statistics under different evolutionary scenarios and calculating the posterior probability of a sweep at each genomic site. SWIF(r) is trained using simulations from a user-specified demographic model and explicitly models the joint distributions of selection statistics, thereby increasing its power to both identify regions undergoing sweeps and localize adaptive mutations. Using array and exome data from 45 ‡Khomani San hunter-gatherers of southern Africa, we identify an enrichment of adaptive signals in genes associated with metabolism and obesity. SWIF(r) provides a transparent probabilistic framework for localizing beneficial mutations that is extensible to a variety of evolutionary scenarios

    Polymorphisms of the _ENPP1_ gene are not associated with type 2 diabetes or obesity in the Chinese Han population

    Get PDF
    *Objective:* Type 2 Diabetes mellitus is a metabolic disorder characterized by chronic hyperglycemia and with a major feature of insulin resistance. Genetic association studies have suggested that _ENPP1_ might play a potential role in susceptibility to type 2 diabetes and obesity. Our study aimed to examine the association between _ENPP1_ and type 2 diabetes and obesity.

*Design:* Association study between two SNPs, rs1044498 (K121Q) and rs7754561 of ENPP1 and diabetes and obesity in the Chinese Han population.

*Subjects:* 1912 unrelated patients (785 male and 1127 female with a mean age 63.8 ± 9 years), 236 IFG/IGT subjects (83 male and 153 female with a mean age 64 ± 9 years) and 2041 controls (635 male and 1406 female with a mean age 58 ± 9 years).
 
*Measurements:* Subjects were genotyped for two SNPs using TaqMan technology on an ABI7900 system and tested by regression analysis.

*Results:* By logistic regression analysis, rs1044498 (K121Q) and rs7754561 showed no statistical association with type 2 diabetes, obesity under additive, dominant and recessive models either before or after adjusting for sex and age. Haplotype analysis found a marginal association of haplotype C-G (p=0.05) which was reported in the previous study.

*Conclusion:* Our investigation did not replicated the positive association found previously and suggested that the polymorphisms of _ENPP1_ might not play a major role in the susceptibility to type 2 diabetes or obesity in the Chinese Han population

    Risk of Type 2 Diabetes and Obesity Is Differentially Associated with Variation in FTO in Whites and African-Americans in the ARIC Study

    Get PDF
    Single nucleotide polymorphisms (SNPs) in the fat mass and obesity associated (FTO) gene are associated with body mass index (BMI) in populations of European descent. The FTO rs9939609 variant, first detected in a genome-wide association study of diabetes, conferred an increased disease risk that was abolished after adjustment for BMI, suggesting that the association may be due to variation in adiposity. The relationship between diabetes, four previously identified FTO polymorphisms that span a 19.6-kb genomic region, and obesity was therefore evaluated in the biracial population-based Atherosclerosis Risk in Communities Study with the goal of further refining the association by comparing results between the two ethnic groups. The prevalence of diabetes and obesity (BMI ≥30 kg/m2) was established at baseline, and diabetes was determined by either self-report, a fasting glucose level ≥126 mg/dL, or non-fasting glucose ≥200 mg/dL. There were 1,004 diabetes cases and 10,038 non-cases in whites, and 670 cases and 2,780 non-cases in African-Americans. Differences in mean BMI were assessed by a general linear model, and multivariable logistic regression was used to predict the risk of diabetes and obesity. For white participants, the FTO rs9939609 A allele was associated with an increased risk of diabetes (odds ratio (OR)  = 1.19, p<0.001) and obesity (OR = 1.22, p<0.001) under an additive genetic model that was similar for all of the SNPs analyzed. In African-Americans, only the rs1421085 C allele was a determinant of obesity risk (OR = 1.17, p = 0.05), but was found to be protective against diabetes (OR = 0.79, p = 0.03). Adjustment for BMI did not eliminate any of the observed associations with diabetes. Significant statistical interaction between race and the FTO variants suggests that the effect on diabetes susceptibility may be context dependent
    corecore