242 research outputs found

    Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT) beyond SMARCA4 Mutations: A Comprehensive Genomic Analysis.

    Get PDF
    Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is an aggressive malignancy that occurs in young women, is characterized by recurrent loss-of-function mutations in the SMARCA4 gene, and for which effective treatments options are lacking. The aim of this study was to broaden the knowledge on this rare malignancy by reporting a comprehensive molecular analysis of an independent cohort of SCCOHT cases. We conducted Whole Exome Sequencing in six SCCOHT, and RNA-sequencing and array comparative genomic hybridization in eight SCCOHT. Additional immunohistochemical, Sanger sequencing and functional data are also provided. SCCOHTs showed remarkable genomic stability, with diploid profiles and low mutation load (mean, 5.43 mutations/Mb), including in the three chemotherapy-exposed tumors. All but one SCCOHT cases exhibited 19p13.2-3 copy-neutral LOH. SMARCA4 deleterious mutations were recurrent and accompanied by loss of expression of the SMARCA2 paralog. Variants in a few other genes located in 19p13.2-3 (e.g., PLK5) were detected. Putative therapeutic targets, including MAGEA4, AURKB and CLDN6, were found to be overexpressed in SCCOHT by RNA-seq as compared to benign ovarian tissue. Lastly, we provide additional evidence for sensitivity of SCCOHT to HDAC, DNMT and EZH2 inhibitors. Despite their aggressive clinical course, SCCOHT show remarkable inter-tumor homogeneity and display genomic stability, low mutation burden and few somatic copy number alterations. These findings and preliminary functional data support further exploration of epigenetic therapies in this lethal disease

    SWI/SNF Complex Alterations in Tumors with Rhabdoid Features: Novel Therapeutic Approaches and Opportunities for Adoptive Cell Therapy

    Full text link
    The SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex is one of the most remarkably altered epigenetic regulators in cancer. Pathogenic mutations in genes encoding SWI/SNF-related proteins have been recently described in many solid tumors, including rare and aggressive malignancies with rhabdoid features with no standard therapies in advanced or metastatic settings. In recent years, clinical trials with targeted drugs aimed at restoring its function have shown discouraging results. However, preclinical data have found an association between these epigenetic alterations and response to immune therapy. Thus, the rationale for immunotherapy strategies in SWI/SNF complex alteration-related tumors is strong. Here, we review the SWI/SNF complex and how its dysfunction drives the oncogenesis of rhabdoid tumors and the proposed strategies to revert this alteration and promising novel therapeutic approaches, including immune checkpoint inhibition and adoptive cell therapy

    Molecular Biomarkers in Sinonasal Cancers: New Frontiers in Diagnosis and Treatment

    Get PDF
    Purpose of Review: Sinonasal tumors are rare and heterogeneous diseases which pose challenges in diagnosis and treatment. Despite significant progress made in surgical, oncological, and radiotherapy fields, their prognosis still remains poor. Therefore, alternative strategies should be studied in order to refine diagnosis and improve patient care. Recent Findings: In recent years, in-depth molecular studies have identified new biological markers, such as genetic abnormalities and epigenetic variations, which have allowed to refine diagnosis and predict prognosis. As a consequence, new histological entities have been described and specific subgroup stratifications within the well-known histotypes have been made possible. These discoveries have expanded indications for immunotherapy and targeted therapies in order to reduce tumor spread, thus representing a valuable implementation of standard treatments. Summary: Recent findings in molecular biology have paved the way for better understanding and managing such rare and aggressive tumors. Although further efforts need to be made in this direction, expectations are promising

    Case report: Heterogenous SMARCA4-deficient thoracic non-small cell lung carcinoma with various responses to nivolumab

    Get PDF
    SMARCA4-deficient non-small cell carcinoma is an aggressive neoplasm with poor outcome. Several studies have highlighted its immunochemistry, pathophysiology, and underlying mechanisms, but studies of its definite treatment are few. Here, we report on a 69-year-old male with heterogenous pathological presentations of SMARCA4-deficient non-small cell carcinoma. He initially presented with neck lymphadenopathies. Immunohistochemistry staining and genomic profiling confirmed the diagnosis of SMARCA4-deficient non-small cell carcinoma. The patient responded well to immune checkpoint inhibitors with nivolumab. However, new lesions with various pathological presentations and various responses to nivolumab appeared during the treatment course. The patient survived more than 3 years from the initial diagnosis. This case shows the efficacy of nivolumab to treat SMARCA4-deficient non-small cell lung carcinoma

    Novel Biomarkers in Sinonasal Cancers: from Bench to Bedside

    Get PDF
    Purpose of Review: Sinonasal cancers are a heterogenous group of rare cancers for which histopathological diagnosis can be very challenging and treatment options are limited for advanced disease in particular. Here, we review the candidacy of novel diagnostic and prognostic biomarkers, and therapeutic targets for sinonasal cancers. / Recent Findings: Molecular multidimensional analyses of sinonasal cancers have been lagging behind other major cancers, but there are numerous publications describing the discovery of novel candidate biomarkers, e.g. the methylation classifier, originally developed for brain cancers, and gene expression panels for the prediction of response to induction chemotherapy in sinonasal undifferentiated carcinoma. The most promising biomarkers are summarized and discussed further with regard to their clinical applicability and future potential. /Summary: Many of the described novel biomarkers for sinonasal cancers will eventually overcome the pitfalls associated with the frequently non-specific immunohistological tests. With comprehensive, multidimensional molecular testing of these tumours in collaborative consortia projects, our better understanding of the molecular mechanisms of sinonasal cancers and their carcinogenesis will determine the most useful diagnostic and prognostic biomarkers, allow stringent multi-institutional validation and guide trials on targeted therapies

    Ipilimumab and Pembrolizumab Mixed Response in a 41-Year-Old Patient with SMARCA4-Deficient Thoracic Sarcoma: An Interdisciplinary Case Study

    Get PDF
    SMARCA4-deficient thoracic sarcoma is a newly described entity of thoracic sarcomas with a poor prognosis, defined by poorly differentiated epithelioid to rhabdoid histomorphology and SMARCA4 gene inactivation. We present a case of a SMARCA4-deficient thoracic sarcoma in a 41-year-old male with a smoking history who presented with an upper anterior mediastinal mass, after seeking medical evaluation for increasing thoracic pain, odynophagia, and dizziness. The biopsy confirmed a large cell tumor with an epithelioid to rhabdoid histomorphology, positive for EMA, CD99, vimentin, TLE1, INI1, PAS-positive cytoplasmic granules, and PD-L1 (100% of tumor cells). High TMB and HRD scores were displayed in the tumor. The histology and immunophenotype of the mass were in line with the diagnosis of SMARCA4-deficient thoracic sarcoma. In the course of his treatment, the patient showcased a partial response to pembrolizumab and the combination of pembrolizumab and ipilimumab. This case report highlights the importance of recognizing SMARCA4-deficient thoracic sarcoma as an individual entity and supports the importance of checkpoint inhibition therapy for SMARCA4-deficient thoracic sarcomas, particularly in cases with a high TMB and PD-L1 expression

    INVESTIGATING THE ROLE OF SWI/SNF CHROMATIN REMODELING LOSS ON KEAP1-NRF2 SIGNALING IN HUMAN CANCER

    Get PDF
    INVESTIGATING THE ROLE OF SWI/SNF CHROMATIN REMODELING LOSS ON KEAP1-NRF2 SIGNALING IN HUMAN CANCER(Under the direction of Dr. Bernard Weissman)SWI/SNF is a chromatin remodeling complex that plays a large role in many cellular processes. Mutations in SWI/SNF subunits have been implicated in many human cancers and the role they play is unknown. NRF2 is a transcription factor regulating the cellular response to redox stress. The role NRF2 plays in human cancer is unknown and conflicted. With evidence supporting either a therapeutic role or an oncogenic role. Using data from The Cancer Genome Atlas (TCGA), we observed that lung adenocarcinoma (LUAD) tumors with low or no expression of SMARCA4, the catalytic subunit of SWI/SNF had increased expression of NRF2 target genes. SMARCA4 gene knockout cell lines confirmed that loss of SMARCA4 increased the expression of NRF2 targets. Chromatin immunoprecipitation found that SMARCA4 is recruited to HMOX1, an NRF2 target, which helped recruit RNA-polymerase II for transcription of HMOX1. We leveraged the data in the TCGA to investigate the role SWI/SNF mutations had on NRF2 in different tumor types. Gene Set Enrichment Analysis (GSEA) of canonical NRF2 signatures was used between tumors with mutant SWI/SNF subunits of interest. We found that ARID1A loss robustly activated NRF2 in head and neck squamous tumors and decreased NRF2 ARID1B loss. Other novel associations between NRF2 and SWI/SNF were made with this analysis such as PBAF loss and esophageal cancer. In summary, we offer evidence that mutations or loss of SWI/SNF is associated with altered KEAP1-NRF2 signaling. Loss of SMARCA4 in LUAD confirms a functional relationship between the two systems. Further experiments to confirm the observations in vivo and in vitro would provide stronger evidence for the link between SWI/SNF and NRF2 in human cancers.Doctor of Philosoph

    Next-generation sequencing identifies mechanisms of tumourigenesis caused by loss of SMARCB1 in Malignant Rhabdoid Tumours

    Get PDF
    PhD ThesisIntroduction: Malignant Rhabdoid Tumours (MRT) are unique malignancies caused by biallelic inactivation of a single gene (SMARCB1). SMARCB1 encodes for a protein that is part of the SWI/SNF chromatin remodelling complex, responsible for the regulation of hundreds of downstream genes/pathways. Despite the simple biology of these tumours, no studies have identified the critical pathways involved in tumourigenesis. The understanding of downstream effects is essential to identifying therapeutic targets that can improve the outcome of MRT patients. Methods: RNA-seq and 450K-methylation analyses have been performed in MRT human primary malignancies (n > 39) and in 4 MRT cell lines in which lentivirus was used to re-express SMARCB1 (G401, A204, CHLA-266, and STA-WT1). The MRT cell lines were treated with 5-aza-2 -deoxycytidine followed by global gene transcription analysis (RNA-seq and 450K-methylation) to investigate how changes in methylation lead to tumourigenesis. Results: We show that primary Malignant Rhabdoid Tumours present a unique and distinct expression/methylation profile which confirms that MRT broadly constitute a single and different tumour type from other paediatric malignancies. However, despite their common cause MRT can be can sub-group by location (i.e. CNS or kidney). We observe that re-expression of SMARCB1 in MRT cell lines determines activation/inactivation of specific downstream pathways such as IL-6/TGF beta. We also observe a direct correlation between alterations in methylation and gene expression in CD44, GLI2, GLI3, CDKN1A, CDKN2A and JARID after SMARB1 re-expression. Loss of SMARCB1 also promotes expression of aberrant isoforms and novel transcripts and causes genome-wide changes in SWI/SNF binding. Conclusion: Next generation transcriptome and methylome analysis in primary MRT and in functional models give us detailed downstream effects of SMARCB1 loss in Malignant Rhabdoid Tumours. The integration of data from both primary and functional models has provided, for the first time, a genome-wide catalogue of SMARCB1 tumourigenic changes (validated using systems biology). Here we show how a single V deletion of SMARCB1 is responsible for deregulation of expression, methylation status and binding at the promoter regions of potent tumour-suppressor genes. The genes, pathways and biological mechanisms indicated as key in tumour development may ultimately be targetable therapeutically and will lead to better treatments for what is currently one of the most lethal paediatric cancers.NECCR, Children with cancer UK, Brain Trust, Love Oliver, CCLG, Karen and Iain Wark, The Smiley Ridley Fund, whose financial support made this project possible

    Beyond Traditional Morphological Characterization of Lung Neuroendocrine Neoplasms: In Silico Study of Next-Generation Sequencing Mutations Analysis across the Four World Health Organization Defined Groups

    Get PDF
    Lung neuroendocrine neoplasms (LNENs) classes, as proposed by the World Health Organization 2015, do not provide properly prognostic and therapeutic indications. In fact, high-throughput molecular analysis, based on next-generation sequencing, identified novel molecular subgroups, associated with different genomic signatures, that could pave the way for alternative therapeutic approaches. The present review, coupled with in silico molecular analysis, could show the current genomic alterations state in actual LNENS groups. Interestingly our manuscript suggests that the molecular novelties could improve the LNENs therapeutics efficacy. In more detail, we reported the differences of gene alterations and mutational rate between LNENS, confirming the central pathogenetic role given by a different mutational rate in chromatin remodeling genes and tumor suppressors TP53-RB1. In conclusion, our results underlined that a further molecular layer is needed to improve the efficacy of LNENs medical treatment.Lung neuroendocrine neoplasms (LNENs) represent a rare and heterogeneous population of lung tumors. LNENs incidence rate has increased dramatically over the past 30 years. The current World Health Organization LNENs classification (WHO 2015), distinguished four LNENs prognostic categories, according to their morphology, necrosis amount and mitotic count: typical carcinoid (TC), atypical-carcinoid (AC), large cell neuroendocrine carcinoma (LCNEC) and small cell lung cancer (SCLC). At present, due to their rarity and biological heterogeneity there is still no consensus on the best therapeutic approach. Next-generation-sequencing analysis showed that WHO 2015 LNENs classes, could be characterized also by specific molecular alterations: frequently mutated genes involving chromatin remodeling and generally characterized by low mutational burden (MB) are frequently detected in both TC and AC; otherwise, TP53 and RB1 tumor suppressor genes alterations and high MB are usually detected in LCNEC and SCLC. We provide an overview concerning gene mutations in each WHO 2015 LNENs class in order to report the current LNENs mutational status as potential tool to better understand their clinical outcome and to drive medical treatment
    • …
    corecore