5 research outputs found

    An Integrated Smart City Platform

    Get PDF
    Smart Cities aim to create a higher quality of life for their citizens, improve business services and promote tourism experience. Fostering smart city innovation at local and regional level requires a set of mature technologies to discover, integrate and harmonize multiple data sources and the exposure of eective applications for end-users (citizens, administrators, tourists...). In this context, Semantic Web technologies and Linked Open Data principles provide a means for sharing knowledge about cities as physical, economical, social, and technical systems, enabling the development of smart city services. Despite the tremendous effort these communities have done so far, there exists a lack of comprehensive and effective platforms that handle the entire process of identication, ingestion, consumption and publication of data for Smart Cities. In this paper, a complete open-source platform to boost the integration, semantic enrichment, publication and exploitation of public data to foster smart cities in local and national administrations is proposed. Starting from mature software solutions, we propose a platform to facilitate the harmonization of datasets (open and private, static and dynamic on real time) of the same domain generated by dierent authorities. The platform provides a unied dataset oriented to smart cities that can be exploited to offer services to the citizens in a uniform way, to easily release open data, and to monitor services status of the city in real time by means of a suite of web applications

    Completely Automated Public Physical test to tell Computers and Humans Apart: A usability study on mobile devices

    Get PDF
    A very common approach adopted to fight the increasing sophistication and dangerousness of malware and hacking is to introduce more complex authentication mechanisms. This approach, however, introduces additional cognitive burdens for users and lowers the whole authentication mechanism acceptability to the point of making it unusable. On the contrary, what is really needed to fight the onslaught of automated attacks to users data and privacy is to first tell human and computers apart and then distinguish among humans to guarantee correct authentication. Such an approach is capable of completely thwarting any automated attempt to achieve unwarranted access while it allows keeping simple the mechanism dedicated to recognizing the legitimate user. This kind of approach is behind the concept of Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA), yet CAPTCHA leverages cognitive capabilities, thus the increasing sophistication of computers calls for more and more difficult cognitive tasks that make them either very long to solve or very prone to false negatives. We argue that this problem can be overcome by substituting the cognitive component of CAPTCHA with a different property that programs cannot mimic: the physical nature. In past work we have introduced the Completely Automated Public Physical test to tell Computer and Humans Apart (CAPPCHA) as a way to enhance the PIN authentication method for mobile devices and we have provided a proof of concept implementation. Similarly to CAPTCHA, this mechanism can also be used to prevent automated programs from abusing online services. However, to evaluate the real efficacy of the proposed scheme, an extended empirical assessment of CAPPCHA is required as well as a comparison of CAPPCHA performance with the existing state of the art. To this aim, in this paper we carry out an extensive experimental study on both the performance and the usability of CAPPCHA involving a high number of physical users, and we provide comparisons of CAPPCHA with existing flavors of CAPTCHA

    Virtual Guidance using Mixed Reality in Historical Places and Museums

    Get PDF
    Mixed Reality (MR) is one of the most disruptive technologies that shows potential in many application domains, particularly in the tourism and cultural heritage sector. MR using the latest headsets with the highest capabilities introduces a new visual platform that can change people’s visual experience. This thesis introduces a HoloLens-based mixed reality guidance system for museums and historical places. This new guidance form considers the inclusiveness of the necessary and optimised functionalities, visual and audio guiding abilities, essential roles of a guide, and the related social interactions in the real-time. A mixed reality guide, dubbed ‘MuseumEye’ was designed and developed for the Egyptian Museum in Cairo, to overcome challenges currently facing the museum, e.g. lack of guiding methods, limited information signposted on the exhibits, lack of visitor engagement resulting in less time spent in the museum compared to other museums with similar capacity and significance. These problems motivated the researcher to conduct an exploratory study to investigate the museum environment and guiding methods by interviewing 10 participants and observing 20 visitors. ‘MuseumEye’ was built based on a literature review of immersive systems in museums and the findings of an exploratory study that reveals visitor behaviours and the nature of guidance in the museum. This project increased levels of engagement and the length of time visitors spend in museums, the Egyptian Museum in Cairo in particular, using the mixed reality technology that provides visitors with additional visual, audio information and computer-generated images at various levels of details and via different media. This research introduces the guidelines of designing immersive reality guide applications using the techniques of spatial mapping, designing the multimedia and UI, and designing interactions for exploratory purposes. The main contributions of this study include various theoretical contributions: 1) creating a new form of guidance that enhances the museum experience through developing a mixed reality system; 2) a theoretical framework that assesses mixed reality guidance systems in terms of perceived usefulness, ease of use, enjoyment, interactivity, the roles of a guide and the likelihood of future use; 3) the Ambient Information Visualisation Concept for increasing visitor engagement through better presenting information and enhancing communication and interaction between visitors and exhibits; and a practical contribution in creating a mixed reality guidance system that reshapes the museum space, enhances visitors’ experience and significantly increases the length of time they spend in the museum. The evaluation comprised of quantitative surveys (171 participants and 9 experts) and qualitative observation (51 participants) using MuseumEye in their tours. The results showed positive responses for all measured aspects and compares these to similar studies. The observation results showed that visitors who use MuseumEye spent four times the duration visitors spent without guides or with human guides in front of exhibited items. The quantitative results showed significant correlations between the measured constructs (perceived usefulness, ease of use, enjoyment, multimedia and UI, interactivity) and the likelihood of future use when the roles of guide mediate the relations. Moreover, the ‘perceived guidance’ is the most influential construct on the likelihood of future use of MuseumEye. The results also revealed a high likelihood of future use, which ensures the sustainability of adopting mixed reality technology in museums. This thesis shows the potential of mixed reality guides in the museum sector that reshape the museum space and offers endless possibilities for museums and heritage sites

    Virtual Guidance using Mixed Reality in Historical Places and Museums

    Get PDF
    Mixed Reality (MR) is one of the most disruptive technologies that shows potential in many application domains, particularly in the tourism and cultural heritage sector. MR using the latest headsets with the highest capabilities introduces a new visual platform that can change people’s visual experience. This thesis introduces a HoloLens-based mixed reality guidance system for museums and historical places. This new guidance form considers the inclusiveness of the necessary and optimised functionalities, visual and audio guiding abilities, essential roles of a guide, and the related social interactions in the real-time. A mixed reality guide, dubbed ‘MuseumEye’ was designed and developed for the Egyptian Museum in Cairo, to overcome challenges currently facing the museum, e.g. lack of guiding methods, limited information signposted on the exhibits, lack of visitor engagement resulting in less time spent in the museum compared to other museums with similar capacity and significance. These problems motivated the researcher to conduct an exploratory study to investigate the museum environment and guiding methods by interviewing 10 participants and observing 20 visitors. ‘MuseumEye’ was built based on a literature review of immersive systems in museums and the findings of an exploratory study that reveals visitor behaviours and the nature of guidance in the museum. This project increased levels of engagement and the length of time visitors spend in museums, the Egyptian Museum in Cairo in particular, using the mixed reality technology that provides visitors with additional visual, audio information and computer-generated images at various levels of details and via different media. This research introduces the guidelines of designing immersive reality guide applications using the techniques of spatial mapping, designing the multimedia and UI, and designing interactions for exploratory purposes. The main contributions of this study include various theoretical contributions: 1) creating a new form of guidance that enhances the museum experience through developing a mixed reality system; 2) a theoretical framework that assesses mixed reality guidance systems in terms of perceived usefulness, ease of use, enjoyment, interactivity, the roles of a guide and the likelihood of future use; 3) the Ambient Information Visualisation Concept for increasing visitor engagement through better presenting information and enhancing communication and interaction between visitors and exhibits; and a practical contribution in creating a mixed reality guidance system that reshapes the museum space, enhances visitors’ experience and significantly increases the length of time they spend in the museum. The evaluation comprised of quantitative surveys (171 participants and 9 experts) and qualitative observation (51 participants) using MuseumEye in their tours. The results showed positive responses for all measured aspects and compares these to similar studies. The observation results showed that visitors who use MuseumEye spent four times the duration visitors spent without guides or with human guides in front of exhibited items. The quantitative results showed significant correlations between the measured constructs (perceived usefulness, ease of use, enjoyment, multimedia and UI, interactivity) and the likelihood of future use when the roles of guide mediate the relations. Moreover, the ‘perceived guidance’ is the most influential construct on the likelihood of future use of MuseumEye. The results also revealed a high likelihood of future use, which ensures the sustainability of adopting mixed reality technology in museums. This thesis shows the potential of mixed reality guides in the museum sector that reshape the museum space and offers endless possibilities for museums and heritage sites
    corecore