30 research outputs found

    A Study on the Influence of Speed on Road Roughness Sensing: the SmartRoadSense Case

    Get PDF
    SmartRoadSense is a crowdsensing project aimed at monitoring the conditions of the road surface. Using the sensors of a smartphone, SmartRoadSense monitors the vertical accelerations inside a vehicle traveling the road and extracts a roughness index conveying information about the road conditions. The roughness index and the smartphone GPS data are periodically sent to a central server where they are processed, associated with the specific road, and aggregated with data measured by other smartphones. This paper studies how the smartphone vertical accelerations and the roughness index are related to the vehicle speed. It is shown that the dependence can be locally approximated with a gamma (power) law. Extensive experimental results using data extracted from SmartRoadSense database confirm the gamma law relationship between the roughness index and the vehicle speed. The gamma law is then used for improving the SmartRoadSense data aggregation accounting for the effect of vehicle speed

    Vehicle Type Recognition Combining Global and Local Features via Two-Stage Classification

    Get PDF
    This study proposes a new vehicle type recognition method that combines global and local features via a two-stage classification. To extract the continuous and complete global feature, an improved Canny edge detection algorithm with smooth filtering and non-maxima suppression abilities is proposed. To extract the local feature from four partitioned key patches, a set of Gabor wavelet kernels with five scales and eight orientations is introduced. Different from the single-stage classification, where all features are incorporated into one classifier simultaneously, the proposed two-stage classification strategy leverages two types of features and classifiers. In the first stage, the preliminary recognition of large vehicle or small vehicle is conducted based on the global feature via a k-nearest neighbor probability classifier. Based on the preliminary result, the specific recognition of bus, truck, van, or sedan is achieved based on the local feature via a discriminative sparse representation based classifier. We experiment with the proposed method on the public and established datasets involving various challenging cases, such as partial occlusion, poor illumination, and scale variation. Experimental results show that the proposed method outperforms existing state-of-the-art methods

    An fpga-based loco-ans implementation for lossless and near-lossless image compression using high-level synthesis

    Full text link
    MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliationsIn this work, we present and evaluate a hardware architecture for the LOCO-ANS (Low Complexity Lossless Compression with Asymmetric Numeral Systems) lossless and near-lossless image compressor, which is based on JPEG-LS standard. The design is implemented in two FPGA generations, evaluating its performance for different codec configurations. The tests show that the design is capable of up to 40.5 MPixels/s and 124 MPixels/s per lane for Zynq 7020 and UltraScale+ FPGAs, respectively. Compared to the single thread LOCO-ANS software implementation running in a 1.2 GHz Raspberry Pi 3B, each hardware lane achieves 6.5 times higher throughput, even when implemented in an older and cost-optimized chip like the Zynq 7020. Results are also presented for a lossless only version, which achieves a lower footprint and approximately 50% higher performance than the version that supports both lossless and near-lossless. Interestingly, these great results were obtained applying High-Level Synthesis, describing the coder with C++ code, which tends to establish a trade-off between design time and quality of results. These results show that the algorithm is very suitable for hardware implementation. Moreover, the implemented system is faster and achieves higher compression than the best previously available near-lossless JPEG-LS hardware implementationThis research was funded in part by the Spanish Research Agency under the project AgileMon (AEI PID2019-104451RB-C21

    Enhanced face detection framework based on skin color and false alarm rejection

    Get PDF
    Fast and precise face detection is a challenging task in computer vision. Human face detection plays an essential role in the first stage of face processing applications such as recognition tracking, and image database management. In the applications, face objects often come from an inconsequential part of images that contain variations namely different illumination, pose, and occlusion. These variations can decrease face detection rate noticeably. Besides that, detection time is an important factor, especially in real time systems. Most existing face detection approaches are not accurate as they have not been able to resolve unstructured images due to large appearance variations and can only detect human face under one particular variation. Existing frameworks of face detection need enhancement to detect human face under the stated variations to improve detection rate and reduce detection time. In this study, an enhanced face detection framework was proposed to improve detection rate based on skin color and provide a validity process. A preliminary segmentation of input images based on skin color can significantly reduce search space and accelerate the procedure of human face detection. The main detection process is based on Haar-like features and Adaboost algorithm. A validity process is introduced to reject non-face objects, which may be selected during a face detection process. The validity process is based on a two-stage Extended Local Binary Patterns. Experimental results on CMU-MIT and Caltech 10000 datasets over a wide range of facial variations in different colors, positions, scales, and lighting conditions indicated a successful face detection rate. As a conclusion, the proposed enhanced face detection framework in color images with the presence of varying lighting conditions and under different poses has resulted in high detection rate and reducing overall detection time

    Alternative protein sources for organic poultry

    Get PDF

    The Future of Information Sciences : INFuture2009 : Digital Resources and Knowledge Sharing

    Get PDF

    Remote Sensing for Land Administration

    Get PDF

    Emotion and Stress Recognition Related Sensors and Machine Learning Technologies

    Get PDF
    This book includes impactful chapters which present scientific concepts, frameworks, architectures and ideas on sensing technologies and machine learning techniques. These are relevant in tackling the following challenges: (i) the field readiness and use of intrusive sensor systems and devices for capturing biosignals, including EEG sensor systems, ECG sensor systems and electrodermal activity sensor systems; (ii) the quality assessment and management of sensor data; (iii) data preprocessing, noise filtering and calibration concepts for biosignals; (iv) the field readiness and use of nonintrusive sensor technologies, including visual sensors, acoustic sensors, vibration sensors and piezoelectric sensors; (v) emotion recognition using mobile phones and smartwatches; (vi) body area sensor networks for emotion and stress studies; (vii) the use of experimental datasets in emotion recognition, including dataset generation principles and concepts, quality insurance and emotion elicitation material and concepts; (viii) machine learning techniques for robust emotion recognition, including graphical models, neural network methods, deep learning methods, statistical learning and multivariate empirical mode decomposition; (ix) subject-independent emotion and stress recognition concepts and systems, including facial expression-based systems, speech-based systems, EEG-based systems, ECG-based systems, electrodermal activity-based systems, multimodal recognition systems and sensor fusion concepts and (x) emotion and stress estimation and forecasting from a nonlinear dynamical system perspective

    Proyecto Docente e Investigador, Trabajo Original de Investigación y Presentación de la Defensa, preparado por Germán Moltó para concursar a la plaza de Catedrático de Universidad, concurso 082/22, plaza 6708, área de Ciencia de la Computación e Inteligencia Artificial

    Full text link
    Este documento contiene el proyecto docente e investigador del candidato Germán Moltó Martínez presentado como requisito para el concurso de acceso a plazas de Cuerpos Docentes Universitarios. Concretamente, el documento se centra en el concurso para la plaza 6708 de Catedrático de Universidad en el área de Ciencia de la Computación en el Departamento de Sistemas Informáticos y Computación de la Universitat Politécnica de València. La plaza está adscrita a la Escola Técnica Superior d'Enginyeria Informàtica y tiene como perfil las asignaturas "Infraestructuras de Cloud Público" y "Estructuras de Datos y Algoritmos".También se incluye el Historial Académico, Docente e Investigador, así como la presentación usada durante la defensa.Germán Moltó Martínez (2022). Proyecto Docente e Investigador, Trabajo Original de Investigación y Presentación de la Defensa, preparado por Germán Moltó para concursar a la plaza de Catedrático de Universidad, concurso 082/22, plaza 6708, área de Ciencia de la Computación e Inteligencia Artificial. http://hdl.handle.net/10251/18903
    corecore