8 research outputs found

    Painterly rendering techniques: A state-of-the-art review of current approaches

    Get PDF
    In this publication we will look at the different methods presented over the past few decades which attempt to recreate digital paintings. While previous surveys concentrate on the broader subject of non-photorealistic rendering, the focus of this paper is firmly placed on painterly rendering techniques. We compare different methods used to produce different output painting styles such as abstract, colour pencil, watercolour, oriental, oil and pastel. Whereas some methods demand a high level of interaction using a skilled artist, others require simple parameters provided by a user with little or no artistic experience. Many methods attempt to provide more automation with the use of varying forms of reference data. This reference data can range from still photographs, video, 3D polygonal meshes or even 3D point clouds. The techniques presented here endeavour to provide tools and styles that are not traditionally available to an artist. Copyright © 2012 John Wiley & Sons, Ltd

    A Natural Image Pointillism with Controlled Ellipse Dots

    Get PDF
    This paper presents an image-based artistic rendering algorithm for the automatic Pointillism style. At first, ellipse dot locations are randomly generated based on a source image; then dot orientations are precalculated with help of a direction map; a saliency map of the source image decides long and short radius of the ellipse dot. At last, the rendering runs layer-by-layer from large size dots to small size dots so as to reserve the detailed parts of the image. Although only ellipse dot shape is adopted, the final Pointillism style performs well because of variable characteristics of the dot

    A workflow for designing stylized shading effects

    Get PDF
    In this report, we describe a workflow for designing stylized shading effects on a 3D object, targeted at technical artists. Shading design, the process of making the illumination of an object in a 3D scene match an artist vision, is usually a time-consuming task because of the complex interactions between materials, geometry, and lighting environment. Physically based methods tend to provide an intuitive and coherent workflow for artists, but they are of limited use in the context of non-photorealistic shading styles. On the other hand, existing stylized shading techniques are either too specialized or require considerable hand-tuning of unintuitive parameters to give a satisfactory result. Our contribution is to separate the design process of individual shading effects in three independent stages: control of its global behavior on the object, addition of procedural details, and colorization. Inspired by the formulation of existing shading models, we expose different shading behaviors to the artist through parametrizations, which have a meaningful visual interpretation. Multiple shading effects can then be composited to obtain complex dynamic appearances. The proposed workflow is fully interactive, with real-time feedback, and allows the intuitive exploration of stylized shading effects, while keeping coherence under varying viewpoints and light configurations. Furthermore, our method makes use of the deferred shading technique, making it easily integrable in existing rendering pipelines.Dans ce rapport, nous décrivons un outil de création de modèles d'illumination adapté à la stylisation de scènes 3D. Contrairement aux modèles d'illumination photoréalistes, qui suivent des contraintes physiques, les modèles d'illumination stylisés répondent à des contraintes artistiques, souvent inspirées de la représentation de la lumière en illustration. Pour cela, la conception de ces modèles stylisés est souvent complexe et coûteuse en temps. De plus, ils doivent produire un résultat cohérent sous une multitude d'angles de vue et d'éclairages. Nous proposons une méthode qui facilite la création d'effets d'illumination stylisés, en décomposant le processus en trois parties indépendantes: contrôle du comportement global de l'illumination, ajout de détails procéduraux, et colorisation.Différents comportements d'illumination sont accessibles à travers des paramétrisations, qui ont une interprétation visuelle, et qui peuvent être combinées pour obtenir des apparences plus complexes. La méthode proposée est interactive, et permet l'exploration efficace de modèles d'illumination stylisés. La méthode est implémentée avec la technique de deferred shading, ce qui la rend facilement utilisable dans des pipelines de rendu existants

    Three-dimensional interactive maps: theory and practice

    Get PDF

    The Machine as Art/ The Machine as Artist

    Get PDF
    The articles collected in this volume from the two companion Arts Special Issues, “The Machine as Art (in the 20th Century)” and “The Machine as Artist (in the 21st Century)”, represent a unique scholarly resource: analyses by artists, scientists, and engineers, as well as art historians, covering not only the current (and astounding) rapprochement between art and technology but also the vital post-World War II period that has led up to it; this collection is also distinguished by several of the contributors being prominent individuals within their own fields, or as artists who have actually participated in the still unfolding events with which it is concerne

    The Machine as Art/ The Machine as Artist

    Get PDF
    corecore