57 research outputs found

    Are Formal Contracts a useful Digital Twin of Software Systems?

    Get PDF
    Digital Twins are a trend topic in the industry today to either manage runtime information or forecast properties of devices and products. The techniques for Digitial Twins are already employed in several disciplines of formal methods, in particular, formal verification, runtime verification and specification inference. In this paper, we connect the Digital Twin concept and existing research areas in the field of formal methods. We sketch how digital twins for software-centric systems can be forged from existing formal methods

    A System for Deduction-based Formal Verification of Workflow-oriented Software Models

    Full text link
    The work concerns formal verification of workflow-oriented software models using deductive approach. The formal correctness of a model's behaviour is considered. Manually building logical specifications, which are considered as a set of temporal logic formulas, seems to be the significant obstacle for an inexperienced user when applying the deductive approach. A system, and its architecture, for the deduction-based verification of workflow-oriented models is proposed. The process of inference is based on the semantic tableaux method which has some advantages when compared to traditional deduction strategies. The algorithm for an automatic generation of logical specifications is proposed. The generation procedure is based on the predefined workflow patterns for BPMN, which is a standard and dominant notation for the modeling of business processes. The main idea for the approach is to consider patterns, defined in terms of temporal logic,as a kind of (logical) primitives which enable the transformation of models to temporal logic formulas constituting a logical specification. Automation of the generation process is crucial for bridging the gap between intuitiveness of the deductive reasoning and the difficulty of its practical application in the case when logical specifications are built manually. This approach has gone some way towards supporting, hopefully enhancing our understanding of, the deduction-based formal verification of workflow-oriented models.Comment: International Journal of Applied Mathematics and Computer Scienc

    Asynchronous Multiparty Session Type Implementability is Decidable - Lessons Learned from Message Sequence Charts

    Get PDF
    Multiparty session types (MSTs) provide efficient means to specify and verify asynchronous message-passing systems. For a global type, which specifies all interactions between roles in a system, the implementability problem asks whether there are local specifications for all roles such that their composition is deadlock-free and generates precisely the specified executions. Decidability of the implementability problem is an open question. We answer it positively for global types with sender-driven choice, which allow a sender to send to different receivers upon branching and a receiver to receive from different senders. To achieve this, we generalise results from the domain of high-level message sequence charts (HMSCs). This connection also allows us to comprehensively investigate how HMSC techniques can be adapted to the MST setting. This comprises techniques to make the problem algorithmically more tractable as well as a variant of implementability that may open new design space for MSTs. Inspired by potential performance benefits, we introduce a generalisation of the implementability problem that we, unfortunately, prove to be undecidable

    Automated Validation of State-Based Client-Centric Isolation with TLA <sup>+</sup>

    Get PDF
    Clear consistency guarantees on data are paramount for the design and implementation of distributed systems. When implementing distributed applications, developers require approaches to verify the data consistency guarantees of an implementation choice. Crooks et al. define a state-based and client-centric model of database isolation. This paper formalizes this state-based model in, reproduces their examples and shows how to model check runtime traces and algorithms with this formalization. The formalized model in enables semi-automatic model checking for different implementation alternatives for transactional operations and allows checking of conformance to isolation levels. We reproduce examples of the original paper and confirm the isolation guarantees of the combination of the well-known 2-phase locking and 2-phase commit algorithms. Using model checking this formalization can also help finding bugs in incorrect specifications. This improves feasibility of automated checking of isolation guarantees in synthesized synchronization implementations and it provides an environment for experimenting with new designs.</p

    A state/event-based model-checking approach for the analysis of abstract system properties.

    Get PDF
    AbstractWe present the UMC framework for the formal analysis of concurrent systems specified by collections of UML state machines. The formal model of a system is given by a doubly labelled transition system, and the logic used to specify its properties is the state-based and event-based logic UCTL. UMC is an on-the-fly analysis framework which allows the user to interactively explore a UML model, to visualize abstract behavioural slices of it and to perform local model checking of UCTL formulae. An automotive scenario from the service-oriented computing (SOC) domain is used as case study to illustrate our approach

    Generalising Projection in Asynchronous Multiparty Session Types

    Get PDF
    Multiparty session types (MSTs) provide an efficient methodology for specifying and verifying message passing software systems. In the theory of MSTs, a global type specifies the interaction among the roles at the global level. A local specification for each role is generated by projecting from the global type on to the message exchanges it participates in. Whenever a global type can be projected on to each role, the composition of the projections is deadlock free and has exactly the behaviours specified by the global type. The key to the usability of MSTs is the projection operation: a more expressive projection allows more systems to be type-checked but requires a more difficult soundness argument. In this paper, we generalise the standard projection operation in MSTs. This allows us to model and type-check many design patterns in distributed systems, such as load balancing, that are rejected by the standard projection. The key to the new projection is an analysis that tracks causality between messages. Our soundness proof uses novel graph-theoretic techniques from the theory of message-sequence charts. We demonstrate the efficacy of the new projection operation by showing many global types for common patterns that can be projected under our projection but not under the standard projection operation
    • …
    corecore