1,118 research outputs found

    802.11n performance analysis for a real multimedia industrial application

    Full text link
    In spite of their limitations, wireless networks are being increasingly used in industrial environments. The electromagnetic phenomena that can occur, along with the interference that may occur due to it being an open medium, mean that fluctuations in latencies are often produced. These drawbacks limit the use of wireless networks for distributed factory applications where timeliness is essential. Recent standards, such as 802.11n, offer some interesting characteristics applicable to factory automation. In particular, QoS support and a very high data rate aids their operation under non-saturation conditions, allowing their satisfactory use as an industrial network. In this paper, the potential of these networks is analyzed in a real world scenario and their performance is compared with an idealized scenario. In both cases the priorities behave as expected, however, the algorithms for an auto-rate functioning perform badly in real world situations, especially in industrial scenarios such as those analyzed here, where the mobility of sources and the interference produced by other sources produce frequent rate changes, leading to a reduction in network performance. (C) 2014 Elsevier B.V. All rights reserved.This work is supported by the MCYT of Spain under the project TIN2013-47272-C2-1-R.Silvestre Blanes, JL.; Berenguer Sebastiá, JR.; Sempere Paya, VM.; Todoli Ferrandis, D. (2015). 802.11n performance analysis for a real multimedia industrial application. Computers in Industry. 66:31-40. https://doi.org/10.1016/j.compind.2014.08.00331406

    High-Speed Communications Over Polymer Optical Fibers for In-Building Cabling and Home Networking

    Get PDF
    This paper focuses on high-speed cabling using polymer optical fibers (POF) in home networking. In particular, we report about the results obtained in the POF-ALL European Project, which is relevant to the Sixth Framework Program, and after two years of the European Project POF-PLUS, which is relevant to the Seventh Framework Program, focusing on their research activities about the use of poly-metyl-metha-acrilate step-index optical fibers for home applications. In particular, for that which concerns POF-ALL, we will describe eight-level pulse amplitude modulation (8-PAM) and orthogonal frequency-division multiplexing (OFDM) approaches for 100-Mb/s transmission over a target distance of 300 m, while for that which concerns POF-PLUS, we will describe a fully digital and a mixed analog-digital solution, both based on intensity modulation direct detection, for transmitting 1 Gb/s over a target distance of 50 m. The ultimate experimental results from the POF-ALL project will be given, while for POF-PLUS, which is still ongoing, we will only show our most recent preliminary results

    Performance evaluation of the IEEE 802.11n random topology WLAN with QoS application

    Get PDF
    The IEEE 802.11n supports high data rate transmissions due its physical layer Multiple Input ‎Multiple Output (MIMO) advanced antenna system and MAC layer enhancement features (frame ‎aggregation and block acknowledgement). As a result this standard is very suitable for multimedia ‎services through its Enhanced Distributed Channel Access (EDCA). This paper focuses on ‎evaluating the Quality of Service (QoS) application on the performance of the IEEE 802.11n ‎random topology WLAN. Three different number of nodes (3, 9 and 18) random topology with one ‎access point are modeled and simulated by using the Riverbed OPNET 17.5 Modular to ‎investigate the Wireless Local Area Network (WLAN) performance for different spatial streams. ‎The result clarified the impact of QoS application and showed that its effect is best at the 18 node ‎number topology. For a 4x4 MIMO, when QoS is applied and with respect to the no QoS ‎application case, simulation results show a maximum improvement of 86.4%, 33.9%, 52.2% and ‎‎68.9% for throughput, delay, data drop and retransmission attempts, respectively.

    NOMA-based 802.11g/n: PHY analysis and MAC implementation

    Get PDF
    Industry 4.0 can be considered as the industrial revolution of the current century. Among others, one of its main objectives is the replacement of wired communications by wireless connectivity. The idea is to overcome the main drawbacks of the current wired ecosystem: the lack of mobility, the deployment costs, cable damage and the difficulties with scalability. However, for this purpose, the nature and requirements of the industrial applications must be taken into account, in particular, the proposed communications protocols must support very low loss rates and a strong robustness against failures. This is a very challenging condition due to the nature of the industrial environments (interference with other communication systems, reflections with metallic objects ...). In addition, another characteristic of the industrial applications is the strict requirement related to the latency. On the other hand, industrial applications are not only based on high challenging services, but also exist more flexible requirement applications, such as, web browser, email, video content or complementary information. Those services are considered Best Effort (BE) services. Eventually, in some wireless applications both critical and BE services have to be offered. For those cases, Non-Orthogonal Multiplexing Access (NOMA) technology together with the IEEE 802.11g/n standard is proposed in this document as the physical layer solution. The IEEE 802.11g/n standard has been modified in order to accommodate NOMA schemes, and then, comprehensive simulations are conducted to check and analyze the behavior of the proposed system. It has been determined that through NOMA technology it is possible to obtain better results in certain cases than those achieved in a transmission cases that implements the IEEE 802.11g/n standard in TDM/FDM basis

    Video QoS/QoE over IEEE802.11n/ac: A Contemporary Survey

    Get PDF
    The demand for video applications over wireless networks has tremendously increased, and IEEE 802.11 standards have provided higher support for video transmission. However, providing Quality of Service (QoS) and Quality of Experience (QoE) for video over WLAN is still a challenge due to the error sensitivity of compressed video and dynamic channels. This thesis presents a contemporary survey study on video QoS/QoE over WLAN issues and solutions. The objective of the study is to provide an overview of the issues by conducting a background study on the video codecs and their features and characteristics, followed by studying QoS and QoE support in IEEE 802.11 standards. Since IEEE 802.11n is the current standard that is mostly deployed worldwide and IEEE 802.11ac is the upcoming standard, this survey study aims to investigate the most recent video QoS/QoE solutions based on these two standards. The solutions are divided into two broad categories, academic solutions, and vendor solutions. Academic solutions are mostly based on three main layers, namely Application, Media Access Control (MAC) and Physical (PHY) which are further divided into two major categories, single-layer solutions, and cross-layer solutions. Single-layer solutions are those which focus on a single layer to enhance the video transmission performance over WLAN. Cross-layer solutions involve two or more layers to provide a single QoS solution for video over WLAN. This thesis has also presented and technically analyzed QoS solutions by three popular vendors. This thesis concludes that single-layer solutions are not directly related to video QoS/QoE, and cross-layer solutions are performing better than single-layer solutions, but they are much more complicated and not easy to be implemented. Most vendors rely on their network infrastructure to provide QoS for multimedia applications. They have their techniques and mechanisms, but the concept of providing QoS/QoE for video is almost the same because they are using the same standards and rely on Wi-Fi Multimedia (WMM) to provide QoS

    Analysis of NOMA-Based Retransmission Schemes for Factory Automation Applications

    Get PDF
    New use cases and applications in factory automation scenarios impose demanding requirements for traditional industrial communications. In particular, latency and reliability are considered as some of the most representative Key Performance Indicators (KPI) that limit the technological choices addressing wireless communications. Indeed, there is a considerable research effort ongoing in the area of wireless systems, not only from academia, but also from companies, towards novel solutions that fit Industry 4.0 KPIs. A major limitation for traditional wireless architectures is related to the harsh nature of the industrial propagation channel. Accordingly, this paper addresses these challenges by studying the reliability and latency performance of the joint use of different retransmission schemes in combination with Non-Orthogonal Multiple Access (NOMA) techniques. Two general retransmission schemes have been tested: time-based and spatial diversity-based retransmissions. An adaptive injection level NOMA solution has been combined with the retransmission schemes to improve the reliability of critical information. In all cases, a particular set of simulations has been carried out varying the main parameters, such as modulation, code rate and the injection level. Moreover, the impact of the number of transmitters in relation to the communication reliability has been analyzed. Results show that spatial diversity-based retransmissions overcome considerably the reliability obtained with time-domain retransmissions while maintaining assumable latency ratesThis work was supported in part by the Basque Government under Grant IT1234-19, in part by the PREDOC under Grant PRE_2020_2_0105, and in part by the Spanish Government through project PHANTOM (MCIU/AEI/FEDER, UE) under Grant RTI2018-099162-B-I0

    Contributions to IEEE 802.11-based long range communications

    Get PDF
    The most essential part of the Internet of Things (IoT) infrastructure is the wireless communication system that acts as a bridge for the delivery of data and control messages between the connected things and the Internet. Since the conception of the IoT, a large number of promising applications and technologies have been developed, which will change different aspects in our daily life. However, the existing wireless technologies lack the ability to support a huge amount of data exchange from many battery-driven devices, spread over a wide area. In order to support the IoT paradigm, IEEE 802.11ah is an Internet of Things enabling technology, where the efficient management of thousands of devices is a key function. This is one of the most promising and appealing standards, which aims to bridge the gap between traditional mobile networks and the demands of the IoT. To this aim, IEEE 802.11ah provides the Restricted Access Window (RAW) mechanism, which reduces contention by enabling transmissions for small groups of stations. Optimal grouping of RAW stations requires an evaluation of many possible configurations. In this thesis, we first discuss the main PHY and MAC layer amendments proposed for IEEE 802.11ah. Furthermore, we investigate the operability of IEEE 802.11ah as a backhaul link to connect devices over possibly long distances. Additionally, we compare the aforementioned standard with previous notable IEEE 802.11 amendments (i.e. IEEE 802.11n and IEEE 802.11ac) in terms of throughput (with and without frame aggregation) by utilizing the most robust modulation schemes. The results show an improved performance of IEEE 802.11ah (in terms of power received at long range while experiencing different packet error rates) as compared to previous IEEE 802.11 standards. Additionally, we expose the capabilities of future IEEE 802.11ah in supporting different IoT applications. In addition, we provide a brief overview of the technology contenders that are competing to cover the IoT communications framework. Numerical results are presented showing how the future IEEE 802.11ah specification offers the features required by IoT communications, thus putting forward IEEE 802.11ah as a technology to cater the needs of the Internet of Things paradigm. Finally, we propose an analytical model (named e-model) that provides an evaluation of the RAW onfiguration performance, allowing a fast adaptation of RAW grouping policies, in accordance to varying channel conditions. We base the e-model in known saturation models, which we adapted to include the IEEE 802.11ah’s PHY and MAC layer modifications and to support different bit rate and packet sizes. As a proof of concept, we use the proposed model to compare the performance of different grouping strategies,showing that the e-model is a useful analysis tool in RAW-enabled scenarios. We validate the model with existing IEEE 802.11ah implementation for ns-3.La clave del concepto Internet de las cosas (IoT) es que utiliza un sistema de comunicación inalámbrica, el cual actúa como puente para la entrega de datos y mensajes de control entre las "cosas" conectadas y el Internet. Desde la concepción del IoT, se han desarrollado gran cantidad de aplicaciones y tecnologías prometedoras que cambiarán distintos aspectos de nuestra vida diaria.Sin embargo, las tecnologías de redes computacionales inalámbricas existentes carecen de la capacidad de soportar las características del IoT, como las grandes cantidades de envío y recepción de datos desde múltiples dispositivos distribuidos en un área amplia, donde los dispositivos IoT funcionan con baterías. Para respaldar el paradigma del IoT, IEEE 802.11ah, la cual es una tecnología habilitadora del Internet de las cosas, para el cual la gestión eficiente de miles de dispositivos es una función clave. IEEE 802.11ah es uno de los estándares más prometedores y atractivos, desde su concepción orientada para IoT, su objetivo principal es cerrar la brecha entre las redes móviles tradicionales y la demandada por el IoT. Con este objetivo en mente, IEEE 802.11ah incluye entre sus características especificas el mecanismo de ventana de acceso restringido (RAW, por sus siglas en ingles), el cual define un nuevo período de acceso al canal libre de contención, reduciendo la misma al permitir transmisiones para pequeños grupos de estaciones. Nótese que para obtener una agrupación óptima de estaciones RAW, se requiere una evaluación de las distintas configuraciones posibles. En esta tesis, primero discutimos las principales mejoras de las capas PHY y MAC propuestas para IEEE 802.11ah. Además, investigamos la operatividad de IEEE 802.11ah como enlace de backhaul para conectar dispositivos a distancias largas. También, comparamos el estándar antes mencionado con las notables especificaciones IEEE 802.11 anteriores (es decir, IEEE 802.11n y IEEE 802.11ac), en términos de rendimiento (incluyendo y excluyendo la agregación de tramas de datos) y utilizando los esquemas de modulación más robustos. Los resultados muestran mejores resultados en cuanto al rendimiento de IEEE 802.11ah (en términos de potencia recibida a largo alcance, mientras se experimentan diferentes tasas de error de paquetes de datos) en comparación con los estándares IEEE 802.11 anteriores.Además, exponemos las capacidades de IEEE 802.11ah para admitir diferentes aplicaciones de IoT. A su vez, proporcionamos una descripción general de los competidores tecnológicos, los cuales contienden para cubrir el marco de comunicaciones IoT. También se presentan resultados numéricos que muestran cómo la especificación IEEE 802.11ah ofrece las características requeridas por las comunicaciones IoT, presentando así a IEEE 802.11ah como una tecnología que puede satisfacer las necesidades del paradigma de Internet de las cosas.Finalmente, proponemos un modelo analítico (denominado e-model) que proporciona una evaluación del rendimiento utilizando la característica RAW con múltiples configuraciones, el cual permite una rápida adaptación de las políticas de agrupación RAW, de acuerdo con las diferentes condiciones del canal de comunicación. Basamos el e-model en modelos de saturación conocidos, que adaptamos para incluir las modificaciones de la capa MAC y PHY de IEEE 802.11ah y para poder admitir diferentes velocidades de transmisión de datos y tamaños de paquetes. Como prueba de concepto, utilizamos el modelo propuesto para comparar el desempeño de diferentes estrategias de agrupación, mostrando que el e-model es una herramienta de análisis útil en escenarios habilitados para RAW. Cabe mencionar que también validamos el modelo con la implementación IEEE 802.11ah existente para ns-3
    • …
    corecore