28 research outputs found

    On thermal sensor calibration and software techniques for many-core thermal management

    Get PDF
    The high power density of a many-core processor results in increased temperature which negatively impacts system reliability and performance. Dynamic thermal management applies thermal-aware techniques at run time to avoid overheating using temperature information collected from on-chip thermal sensors. Temperature sensing and thermal control schemes are two critical technologies for successfully maintaining thermal safety. In this dissertation, on-line thermal sensor calibration schemes are developed to provide accurate temperature information. Software-based dynamic thermal management techniques are proposed using calibrated thermal sensors. Due to process variation and silicon aging, on-chip thermal sensors require periodic calibration before use in DTM. However, the calibration cost for thermal sensors can be prohibitively high as the number of on-chip sensors increases. Linear models which are suitable for on-line calculation are employed to estimate temperatures at multiple sensor locations using performance counters. The estimated temperature and the actual sensor thermal profile show a very high similarity with correlation coefficient ~0.9 for SPLASH2 and SPEC2000 benchmarks. A calibration approach is proposed to combine potentially inaccurate temperature values obtained from two sources: thermal sensor readings and temperature estimations. A data fusion strategy based on Bayesian inference, which combines information from these two sources, is demonstrated. The result shows the strategy can effectively recalibrate sensor readings in response to inaccuracies caused by process variation and environmental noise. The average absolute error of the corrected sensor temperature readings is A dynamic task allocation strategy is proposed to address localized overheating in many-core systems. Our approach employs reinforcement learning, a dynamic machine learning algorithm that performs task allocation based on current temperatures and a prediction regarding which assignment will minimize the peak temperature. Our results show that the proposed technique is fast (scheduling performed in \u3c1 \u3ems) and can efficiently reduce peak temperature by up to 8 degree C in a 49-core processor (6% on average) versus a leading competing task allocation approach for a series of SPLASH-2 benchmarks. Reinforcement learning has also been applied to 3D integrated circuits to allocate tasks with thermal awareness

    Single event upset hardened embedded domain specific reconfigurable architecture

    Get PDF

    Modelling, Synthesis, and Configuration of Networks-on-Chips

    Get PDF

    Ultra Low Power Digital Circuit Design for Wireless Sensor Network Applications

    Get PDF
    Ny forskning innenfor feltet trĂ„dlĂžse sensornettverk Ă„pner for nye og innovative produkter og lĂžsninger. Biomedisinske anvendelser er blant omrĂ„dene med stĂžrst potensial og det investeres i dag betydelige belĂžp for Ă„ bruke denne teknologien for Ă„ gjĂžre medisinsk diagnostikk mer effektiv samtidig som man Ă„pner for fjerndiagnostikk basert pĂ„ trĂ„dlĂžse sensornoder integrert i et ”helsenett”. MĂ„let er Ă„ forbedre tjenestekvalitet og redusere kostnader samtidig som brukerne skal oppleve forbedret livskvalitet som fĂžlge av Ăžkt trygghet og mulighet for Ă„ tilbringe mest mulig tid i eget hjem og unngĂ„ unĂždvendige sykehusbesĂžk og innleggelser. For Ă„ gjĂžre dette til en realitet er man avhengige av sensorelektronikk som bruker minst mulig energi slik at man oppnĂ„r tilstrekkelig batterilevetid selv med veldig smĂ„ batterier. I sin avhandling ” Ultra Low power Digital Circuit Design for Wireless Sensor Network Applications” har PhD-kandidat Farshad Moradi fokusert pĂ„ nye lĂžsninger innenfor konstruksjon av energigjerrig digital kretselektronikk. Avhandlingen presenterer nye lĂžsninger bĂ„de innenfor aritmetiske og kombinatoriske kretser, samtidig som den studerer nye statiske minneelementer (SRAM) og alternative minnearkitekturer. Den ser ogsĂ„ pĂ„ utfordringene som oppstĂ„r nĂ„r silisiumteknologien nedskaleres i takt med mikroprosessorutviklingen og foreslĂ„r lĂžsninger som bidrar til Ă„ gjĂžre kretslĂžsninger mer robuste og skalerbare i forhold til denne utviklingen. De viktigste konklusjonene av arbeidet er at man ved Ă„ introdusere nye konstruksjonsteknikker bĂ„de er i stand til Ă„ redusere energiforbruket samtidig som robusthet og teknologiskalerbarhet Ăžker. Forskningen har vĂŠrt utfĂžrt i samarbeid med Purdue University og vĂŠrt finansiert av Norges ForskningsrĂ„d gjennom FRINATprosjektet ”Micropower Sensor Interface in Nanometer CMOS Technology”

    Energy-aware Fault-tolerant Scheduling for Hard Real-time Systems

    Get PDF
    Over the past several decades, we have experienced tremendous growth of real-time systems in both scale and complexity. This progress is made possible largely due to advancements in semiconductor technology that have enabled the continuous scaling and massive integration of transistors on a single chip. In the meantime, however, the relentless transistor scaling and integration have dramatically increased the power consumption and degraded the system reliability substantially. Traditional real-time scheduling techniques with the sole emphasis on guaranteeing timing constraints have become insufficient. In this research, we studied the problem of how to develop advanced scheduling methods on hard real-time systems that are subject to multiple design constraints, in particular, timing, energy consumption, and reliability constraints. To this end, we first investigated the energy minimization problem with fault-tolerance requirements for dynamic-priority based hard real-time tasks on a single-core processor. Three scheduling algorithms have been developed to judiciously make tradeoffs between fault tolerance and energy reduction since both design objectives usually conflict with each other. We then shifted our research focus from single-core platforms to multi-core platforms as the latter are becoming mainstream. Specifically, we launched our research in fault-tolerant multi-core scheduling for fixed-priority tasks as fixed-priority scheduling is one of the most commonly used schemes in the industry today. For such systems, we developed several checkpointing-based partitioning strategies with the joint consideration of fault tolerance and energy minimization. At last, we exploited the implicit relations between real-time tasks in order to judiciously make partitioning decisions with the aim of improving system schedulability. According to the simulation results, our design strategies have been shown to be very promising for emerging systems and applications where timeliness, fault-tolerance, and energy reduction need to be simultaneously addressed

    Faculty Publications & Presentations, 2010-2011

    Get PDF
    corecore