1,372 research outputs found

    Fine-tuning Multi-hop Question Answering with Hierarchical Graph Network

    Full text link
    In this paper, we present a two stage model for multi-hop question answering. The first stage is a hierarchical graph network, which is used to reason over multi-hop question and is capable to capture different levels of granularity using the nature structure(i.e., paragraphs, questions, sentences and entities) of documents. The reasoning process is convert to node classify task(i.e., paragraph nodes and sentences nodes). The second stage is a language model fine-tuning task. In a word, stage one use graph neural network to select and concatenate support sentences as one paragraph, and stage two find the answer span in language model fine-tuning paradigm.Comment: the experience result is not as good as I excep

    RIDE: Rewarding Impact-Driven Exploration for Procedurally-Generated Environments

    Full text link
    Exploration in sparse reward environments remains one of the key challenges of model-free reinforcement learning. Instead of solely relying on extrinsic rewards provided by the environment, many state-of-the-art methods use intrinsic rewards to encourage exploration. However, we show that existing methods fall short in procedurally-generated environments where an agent is unlikely to visit a state more than once. We propose a novel type of intrinsic reward which encourages the agent to take actions that lead to significant changes in its learned state representation. We evaluate our method on multiple challenging procedurally-generated tasks in MiniGrid, as well as on tasks with high-dimensional observations used in prior work. Our experiments demonstrate that this approach is more sample efficient than existing exploration methods, particularly for procedurally-generated MiniGrid environments. Furthermore, we analyze the learned behavior as well as the intrinsic reward received by our agent. In contrast to previous approaches, our intrinsic reward does not diminish during the course of training and it rewards the agent substantially more for interacting with objects that it can control

    Pretraining in Deep Reinforcement Learning: A Survey

    Full text link
    The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions
    • …
    corecore