5 research outputs found

    Filter-less WDM for visible light communications using colored pulse amplitude modulation

    Get PDF
    This paper demonstrates, for the first time, a new wavelength-division multiplexing (WDM) scheme for visible light communications using multi-level coloured pulse amplitude modulation (M-CPAM). Unlike traditional WDM, no optical bandpass filters are required and only a single optical detector is used. We show that, by transmitting n independent sets of weighted on-off keying non-return-to-zero data on separate wavelengths over a line-of-sight transmission path, the resultant additive symbols can be successfully demodulated. Hence, the data rates can be aggregated for a single user or divided into individual colours for multiple user access schemes. The system is empirically tested for M = 4 and 8 using an off-the-shelf red, green and blue (RGB) chip light emitting diode (LED). We demonstrate that for M = 4, using the R and B chips a bit error rate (BER) of ≤10-6 can be achieved for each wavelength at bit rates up to 10 Mbps, limited by the LEDs under test. For M = 8 using R, G and B a BER of ≤10-6 can be achieved for each wavelength at bit rates up to 5 Mbps

    Visible Light Communication (VLC)

    Get PDF
    Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC

    Investigation of WDM VLC Using Standard 5 mm RGB LEDs

    Get PDF
    This paper investigates wavelength division multiplexing (WDM) uisng standard off-the shelf commercial 5 mm red, green, blue chip light-emitting diodes for visible light communications (VLC). From the initial observations of the illuminance footprint, it is found that the illumination overlap from each of the three colours is difficult to achieve a white light due to the physical layout of the emitting elements. We experimentally demonstrate that WDM is only achievable with a horizontal misalignment of +/-0.5 cm or +/-2 cm of the origin at a transmission span of 10 and 40 cm. Furthermore, with respect to the angular misalignment, WDM is achievable within a cone area of +5° of the origin at 10 cm distance and only along the origin at a distance of 40 cm

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries
    corecore