7,827 research outputs found

    Three-coloring triangle-free graphs on surfaces III. Graphs of girth five

    Get PDF
    We show that the size of a 4-critical graph of girth at least five is bounded by a linear function of its genus. This strengthens the previous bound on the size of such graphs given by Thomassen. It also serves as the basic case for the description of the structure of 4-critical triangle-free graphs embedded in a fixed surface, presented in a future paper of this series.Comment: 53 pages, 7 figures; updated according to referee remark

    Spheres are rare

    Full text link
    We prove that triangulations of homology spheres in any dimension grow much slower than general triangulations. Our bound states in particular that the number of triangulations of homology spheres in 3 dimensions grows at most like the power 1/3 of the number of general triangulations.Comment: 14 pages, 1 figur

    3-coloring triangle-free planar graphs with a precolored 8-cycle

    Full text link
    Let G be a planar triangle-free graph and let C be a cycle in G of length at most 8. We characterize all situations where a 3-coloring of C does not extend to a proper 3-coloring of the whole graph.Comment: 20 pages, 5 figure

    Asymptotic enumeration and limit laws for graphs of fixed genus

    Full text link
    It is shown that the number of labelled graphs with n vertices that can be embedded in the orientable surface S_g of genus g grows asymptotically like c(g)n5(g−1)/2−1γnn!c^{(g)}n^{5(g-1)/2-1}\gamma^n n! where c(g)>0c^{(g)}>0, and γ≈27.23\gamma \approx 27.23 is the exponential growth rate of planar graphs. This generalizes the result for the planar case g=0, obtained by Gimenez and Noy. An analogous result for non-orientable surfaces is obtained. In addition, it is proved that several parameters of interest behave asymptotically as in the planar case. It follows, in particular, that a random graph embeddable in S_g has a unique 2-connected component of linear size with high probability
    • …
    corecore