27,378 research outputs found

    Multi-Gigabit Wireless data transfer at 60 GHz

    Full text link
    In this paper we describe the status of the first prototype of the 60 GHz wireless Multi-gigabit data transfer topology currently under development at University of Heidelberg using IBM 130 nm SiGe HBT BiCMOS technology. The 60 GHz band is very suitable for high data rate and short distance applications as for example needed in the HEP experments. The wireless transceiver consist of a transmitter and a receiver. The transmitter includes an On-Off Keying (OOK) modulator, an Local Oscillator (LO), a Power Amplifier (PA) and a BandPass Filter (BPF). The receiver part is composed of a BandPass- Filter (BPF), a Low Noise Amplifier (LNA), a double balanced down-convert Gilbert mixer, a Local Oscillator (LO), then a BPF to remove the mixer introduced noise, an Intermediate Amplifier (IF), an On-Off Keying demodulator and a limiting amplifier. The first prototype would be able to handle a data-rate of about 3.5 Gbps over a link distance of 1 m. The first simulations of the LNA show that a Noise Figure (NF) of 5 dB, a power gain of 21 dB at 60 GHz with a 3 dB bandwidth of more than 20 GHz with a power consumption 11 mW are achieved. Simulations of the PA show an output referred compression point P1dB of 19.7 dB at 60 GHz.Comment: Proceedings of the WIT201

    A SINGLE POWER SUPPLY 0.1-3.5 GHZ LOW NOISE AMPLIFIER DESIGN USING A LOW COST 0.5 µM D-MODE PHEMT PROCESS

    Get PDF
    Design and testing results of a single power supply wide-band low noise amplifier (LNA) based on low cost 0.5 µm D-mode pHEMT process are presented. It is shown that the designed cascode LNA has operating frequency range up to 3.5 GHz, power gain above 15 dB, noise figure below 2.2 dB, output linearity above 17 dBm and power consumption less than 325 mW. Potential immunity of the LNA to total ionizing dose and destructive single event effects exceed 300 krad and 60 MeV·cm2/mg respectively

    A low noise and power consumption, high-gain LNA in 130 nm SiGe BiCMOS using transmission lines

    Get PDF
    Abstract: A two-stage low-noise amplifier (LNA), designed using GlobalFoundries’ 130 nm SiGe BiCMOS process technology for 56 – 64 GHz applications is presented in this paper. The LNA consists of two cascode stages, with inductive degeneration using short stub transmission lines with a quarter wavelength. The input matching and output matching adopt T-section matching to ensure optimal noise and input matching, while realizing high gain over the desired frequency using the interstage and output matching. The designed LNA uses 7.6 mW of dc power from a 1.5 V supply, while achieving 22.99 dB gain and a noise figure of 4.43 dB at 60 GHz. It is unconditionally stable and has a 3 dB bandwidth of 3.9 dB across the V-band

    Millimeter-Wave Concurrent Dual-Band BiCMOS RFICs for Radar and Communication RF Front-End

    Get PDF
    The recent advancement in silicon-based technologies has offered the opportunity for the development of highly-integrated circuits and systems in the millimeter-wave frequency regime. In particular, the demand for high performance multi-band multi-mode radar and communication systems built on silicon-based technologies has been increased dramatically for both military and commercial applications. This dissertation presents the design and implementation of advanced millimeter-wave front-end circuits in SiGe BiCMOS process including a transmit/receive switch module with integrated calibration function, low noise amplifier, and power amplifier for millimeter-wave concurrent dual-band dual-polarization radars and communication systems. The proposed circuits designed for the concurrent dual-band dual-polarization radars and communication systems were fabricated using 0.18-μm BiCMOS process resulting in novel circuit architectures for concurrent multi-band operation. The developed concurrent dual-band circuits fabricated on 0.18-μm BiCMOS process include the T/R/Calibration switch module for digital beam forming array system at 24.5/35 GHz, concurrent dual-band low noise amplifiers at 44/60 GHz, and concurrent dual-band power amplifier at 44/60 GHz. With having all the design frequencies closely spaced to each other showing the frequency ratio below 1.43, the designed circuits provided the integrated dual-band filtering function with Q-enhanced frequency responses. Inspired by the composite right/left- handed metamaterial transmission line approaches, the integrated Q-enhanced filtering sub-circuits provided unprecedented dual-band filtering capability. The new concurrent dual-band dual-mode circuits and system architecture can provide enhanced radar and communication system performance with extended coverage, better image synthesis and target locating by the enhanced diversity. The circuit level hardware research conducted in this dissertation is expected to contribute to enhance the performance of multi-band multi-mode imaging, sensing, and communication array systems

    Ka-band High-linearity and Low-noise Gallium Nitride MMIC Amplifiers for Spaceborne Telecommunications

    Get PDF
    Gallium Nitride is becoming an interesting solution for low-noise applications in the lower part of the millimetre-wave spectrum and is gaining increasing attention in the space community for microwave receiver functionalities. Lately, its maturity level has increased and its performance in terms of noise figure and operating frequency is reaching other advanced III-V technologies such as Gallium Arsenide and Indium Phoshpide. Moreover, Gallium Nitride features higher power handling capability in comparison to the previously mentioned III-V technologies. In this context, we have designed and characterized two demonstrator circuits of critical microwave receiver functionalities: a Low-Noise Amplifier and a Low-Distortion Amplifier operating at Ka-band. It is shown that GaN circuits compare well in terms of noise figure, gain, and operating frequency with respect to other advanced III-V technologies, and most of all exhibit superior linearity in terms of intermodulation distortion. The designed Low-Noise Amplifier exhibits state-of-the-art 1.2 dB Noise Figure in the 27-31 GHz bandwidth thanks to a profitable combination of 60- and 100-nm gate length transistors on the same MMIC. On the other hand, the Low-Distortion Amplifier features state-of-the-art +30 dBm Output Third Order Intercept point in the same operating bandwidth while requiring only 216 mW dc power. The presented electrical performances are validated by comparing these designs to others available in open literature through figures of merit that normalize trade-offs by transistor length (therefore a fair comparison) aiming to highlight the merits of the proposed design methodologies

    Low noise amplifiers in InP technology for pseudo correlating millimeter wave radiometer

    Get PDF
    This decade will be very important for cosmology due to several missions to measure the cosmic microwave background radiation. These measurements require highly sensitive radiometers operating over a very wide frequency spectrum. The millimeter wave radiometers are best developed as pseudo correlating radiometers due to the inherent stability and high sensitivity of this instrument, To miniaturize the size and power consumption of these radiometers we have developed the critical low noise amplifier and phase switch MMICs using high-performance InP technologies. The low noise amplifiers achieved record 2.3 dB noise figure over the 60-80 GHz frequency band at room temperature and less than 25 K noise temperature at 20 K ambient temperature. These MMICs form the building blocks for 70 GHz highly sensitive correlating radiometers, that are needed e.g. in the ESA Planck mission

    Ultra high data rate CMOS front ends

    Get PDF
    The availability of numerous mm-wave frequency bands for wireless communication has motivated the exploration of multi-band and multi-mode integrated components and systems in the main stream CMOS technology. This opportunity has faced the RF designer with the transition between schematic and layout. Modeling the performance of circuits after layout and taking into account the parasitic effects resulting from the layout are two issues that are more important and influential at high frequency design. Performing measurements using on-wafer probing at 60 GHz has its own complexities. The very short wave-length of the signals at mm-wave frequencies makes the measurements very sensitive to the effective length and bending of the interfaces. This paper presents different 60 GHz corner blocks, e.g. Low Noise Amplifier, Zero IF mixer, Phase-Locked Loop, a Dual-Mode Mm-Wave Injection-Locked Frequency Divider and an active transformed power amplifiers implemented in CMOS technologies. These results emphasize the feasibility of the realization 60 GHZ integrated components and systems in the main stream CMOS technology

    LFI 30 and 44 GHz receivers Back-End Modules

    Full text link
    The 30 and 44 GHz Back End Modules (BEM) for the Planck Low Frequency Instrument are broadband receivers (20% relative bandwidth) working at room temperature. The signals coming from the Front End Module are amplified, band pass filtered and finally converted to DC by a detector diode. Each receiver has two identical branches following the differential scheme of the Planck radiometers. The BEM design is based on MMIC Low Noise Amplifiers using GaAs P-HEMT devices, microstrip filters and Schottky diode detectors. Their manufacturing development has included elegant breadboard prototypes and finally qualification and flight model units. Electrical, mechanical and environmental tests were carried out for the characterization and verification of the manufactured BEMs. A description of the 30 and 44 GHz Back End Modules of Planck-LFI radiometers is given, with details of the tests done to determine their electrical and environmental performances. The electrical performances of the 30 and 44 GHz Back End Modules: frequency response, effective bandwidth, equivalent noise temperature, 1/f noise and linearity are presented

    Millimeter-Wave Band Pass Distributed Amplifier for Low-Cost Active Multi-Beam Antennas

    Get PDF
    Recently, there have been a great interest in the millimeter-wave (mmW) and terahertz (THz) bands due to the unique features they provide for various applications. For example, the mmW is not significantly affected by the atmospheric constraints and it can penetrate through clothing and other dielectric materials. Therefore, it is suitable for a vast range of imaging applications such as vision, safety, health, environmental studies, security and non-destructive testing. Millimeter-wave imaging systems have been conventionally used for high end applications implementing sophisticated and expensive technologies. Recent advancements in the silicon integrated and low loss material passive technologies have created a great opportunity to study the feasibility of low cost mmW imaging systems. However, there are several challenges to be addressed first. Examples are modeling of active and passive devices and their low performance, highly attenuated channel and poor signal to noise ratio in the mmW. The main objective of this thesis is to investigate and develop new technologies enabling cost-effective implementation of mmW and sub-mmW imaging systems. To achieve this goal, an integrated active Rotman lens architecture is proposed as an ultimate solution to combine the unique properties of a Rotman lens with the superiority of CMOS technology for fabrication of cost effective integrated mmW systems. However, due to the limited sensitivity of on-chip detectors in the mmW, a large number of high gain, wide-band and miniaturized mmW Low Noise Amplifiers (LNA) are required to implement the proposed integrated Rotman lens architecture. A unique solution presented in this thesis is the novel Band Pass Distributed Amplifier (BPDA) topology. In this new topology, by short circuiting the line terminations in a Conventional Distributed Amplifier (CDA), standing waves are created in its artificial transmission lines. Conventionally, standing waves are strongly avoided by carefully matching these lines to 50 Ω in order to prevent instability of the amplifier. This causes that a large portion of the signal be absorbed in these resistive terminations. In this thesis, it is shown that due to presence of highly lossy parasitics of CMOS transistor at the mmW the amplifier stability is inherently achieved. Moreover, by eliminating these lossy and noise terminations in the CDA, the amplifier gain is boosted and its noise figure is reduced. In addition, a considerable decrease in the number of elements enables low power realization of many amplifiers in a small chip area. Using the lumped element model of the transistor, the transfer function of a single stage BPDAs is derived and compared to its conventional counter part. A methodology to design a single stage BPDA to achieve all the design goals is presented. Using the presented design guidelines, amplifiers for different mmW frequencies have been designed, fabricated and tested. Using only 4 transistors, a 60 GHz amplifier is fabricated on a very small chip area of 0.105 mm2 by a low-cost 130 nm CMOS technology. A peak gain of 14.7 dB and a noise figure of 6 dB are measured for this fabricated amplifier. oreover, it is shown that by further circuit optimization, high gain amplification can be realized at frequencies above the cut-off frequency of the transistor. Simulations show 32 and 28 dB gain can be obtained by implementing only 6 transistors using this CMOS technology at 60 and 77 GHz. A 4-stage 85 GHz amplifier is also designed and fabricated and a measured gain of 10 dB at 82 GHz is achieved with a 3 dB bandwidth of 11 GHz from 80 to 91 GHz. A good agreement between the simulated and measured results verifies the accuracy of the design procedure. In addition, a multi-stage wide-band BPDA has been designed to show the ability of the proposed topology for design of wide band mmW amplifiers using the CMOS technology. Simulated gain of 20.5 dB with a considerable 3 dB bandwidth of 38 GHz from 30 to 68 GHz is achieved while the noise figure is less than 6 dB in the whole bandwidth. An amplifier figure of merit is defined in terms of gain, noise figure, chip area, band width and power consumption. The results are compared to those of the state of the art to demonstrate the advantages of the proposed circuit topology and presented design techniques. Finally, a Rotman lens is designed and optimized by choosing a very small Focal Lens Ratio (FL), and a high measured efficiency of greater than 30% is achieved while the lens dimensions are less than 6 mm. The lens is designed and implemented using a low cost Alumina substrate and conventional microstrip lines to ease its integration with the active parts of the system.1 yea

    125 - 211 GHz low noise MMIC amplifier design for radio astronomy

    Get PDF
    To achieve the low noise and wide bandwidth required for millimeter wavelength astronomy applications, superconductor-insulator-superconductor (SIS) mixer based receiver systems have typically been used. This paper investigates the performance of high electron mobility transistor (HEMT) based low noise amplifiers (LNAs) as an alternative approach for systems operating in the 125 — 211 GHz frequency range. A four-stage, common-source, unconditionally stable monolithic microwave integrated circuit (MMIC) design is presented using the state-of-the-art 35 nm indium phosphide HEMT process from Northrop Grumman Corporation. The simulated MMIC achieves noise temperature (T_e) lower than 58 K across the operational bandwidth, with average T_e of 38.8 K (corresponding to less than 5 times the quantum limit (hf/k) at 170 GHz) and forward transmission of 20.5 ± 0.85 dB. Input and output reflection coefficients are better than -6 and -12 dB, respectively, across the desired bandwidth. To the authors knowledge, no LNA currently operates across the entirety of this frequency range. Successful fabrication and implementation of this LNA would challenge the dominance SIS mixers have on sub-THz receivers
    corecore