292 research outputs found

    SLAM for Visually Impaired People: A Survey

    Full text link
    In recent decades, several assistive technologies for visually impaired and blind (VIB) people have been developed to improve their ability to navigate independently and safely. At the same time, simultaneous localization and mapping (SLAM) techniques have become sufficiently robust and efficient to be adopted in the development of assistive technologies. In this paper, we first report the results of an anonymous survey conducted with VIB people to understand their experience and needs; we focus on digital assistive technologies that help them with indoor and outdoor navigation. Then, we present a literature review of assistive technologies based on SLAM. We discuss proposed approaches and indicate their pros and cons. We conclude by presenting future opportunities and challenges in this domain.Comment: 26 pages, 5 tables, 3 figure

    Portable Robotic Navigation Aid for the Visually Impaired

    Get PDF
    This dissertation aims to address the limitations of existing visual-inertial (VI) SLAM methods - lack of needed robustness and accuracy - for assistive navigation in a large indoor space. Several improvements are made to existing SLAM technology, and the improved methods are used to enable two robotic assistive devices, a robot cane, and a robotic object manipulation aid, for the visually impaired for assistive wayfinding and object detection/grasping. First, depth measurements are incorporated into the optimization process for device pose estimation to improve the success rate of VI SLAM\u27s initialization and reduce scale drift. The improved method, called depth-enhanced visual-inertial odometry (DVIO), initializes itself immediately as the environment\u27s metric scale can be derived from the depth data. Second, a hybrid PnP (perspective n-point) method is introduced for a more accurate estimation of the pose change between two camera frames by using the 3D data from both frames. Third, to implement DVIO on a smartphone with variable camera intrinsic parameters (CIP), a method called CIP-VMobile is devised to simultaneously estimate the intrinsic parameters and motion states of the camera. CIP-VMobile estimates in real time the CIP, which varies with the smartphone\u27s pose due to the camera\u27s optical image stabilization mechanism, resulting in more accurate device pose estimates. Various experiments are performed to validate the VI-SLAM methods with the two robotic assistive devices. Beyond these primary objectives, SM-SLAM is proposed as a potential extension for the existing SLAM methods in dynamic environments. This forward-looking exploration is premised on the potential that incorporating dynamic object detection capabilities in the front-end could improve SLAM\u27s overall accuracy and robustness. Various experiments have been conducted to validate the efficacy of this newly proposed method, using both public and self-collected datasets. The results obtained substantiate the viability of this innovation, leaving a deeper investigation for future work

    Real-Time Obstacle Detection System in Indoor Environment for the Visually Impaired Using Microsoft Kinect Sensor

    Get PDF
    Any mobility aid for the visually impaired people should be able to accurately detect and warn about nearly obstacles. In this paper, we present a method for support system to detect obstacle in indoor environment based on Kinect sensor and 3D-image processing. Color-Depth data of the scene in front of the user is collected using the Kinect with the support of the standard framework for 3D sensing OpenNI and processed by PCL library to extract accurate 3D information of the obstacles. The experiments have been performed with the dataset in multiple indoor scenarios and in different lighting conditions. Results showed that our system is able to accurately detect the four types of obstacle: walls, doors, stairs, and a residual class that covers loose obstacles on the floor. Precisely, walls and loose obstacles on the floor are detected in practically all cases, whereas doors are detected in 90.69% out of 43 positive image samples. For the step detection, we have correctly detected the upstairs in 97.33% out of 75 positive images while the correct rate of downstairs detection is lower with 89.47% from 38 positive images. Our method further allows the computation of the distance between the user and the obstacles

    The S-BAN: insights into the perception of shape-changing haptic interfaces via virtual pedestrian navigation

    Get PDF
    Screen-based pedestrian navigation assistance can be distracting or inaccessible to users. Shape-changing haptic interfaces can overcome these concerns. The S-BAN is a new handheld haptic interface that utilizes a parallel kinematic structure to deliver 2-DOF spatial information over a continuous workspace, with a form factor suited to integration with other travel aids. The ability to pivot, extend and retract its body opens possibilities and questions around spatial data representation. We present a static study to understand user perception of absolute pose and relative motion for two spatial mappings, showing highest sensitivity to relative motions in the cardinal directions. We then present an embodied navigation experiment in virtual reality. User motion efficiency when guided by the S-BAN was statistically equivalent to using a vision-based tool (a smartphone proxy). Although haptic trials were slower than visual trials, participants’ heads were more elevated with the S-BAN, allowing greater visual focus on the environment

    Electronic Smart Canes for Visually Impaired People

    Get PDF
    Στα πλαίσια αυτής της εργασίας, έγινε μια εκτενής ανασκόπηση με τις σημαντικότερες και πιο πρόσφατες τεχνολογίες «έξυπνων» μπαστουνιών για τυφλούς και άτομα με απώλεια όρασης. Σε αυτή την ανασκόπηση περιλαμβάνονται τα πιο πρόσφατα ερευνητικά αποτελέσματα της διεθνούς επιστημονικής βιβλιογραφίας, σχετικές πατέντες αλλά και τα εμπορικά διαθέσιμα προϊόντα. Για κάθε μία από αυτές τις συσκευές περιγράφεται περιληπτικά η αρχή λειτουργίας της που συνοδεύεται από το πρωτότυπο του συστήματος. Στη συνέχεια, οι συσκευές ταξινομούνται σύμφωνα με τις τεχνολογίες που χρησιμοποιούν και τα βασικά χαρακτηριστικά τους, ενώ παρουσιάζονται επιπλέον πληροφορίες σχετικά με τις ερευνητικές δοκιμασίες με χρήστες που διεξήχθησαν και τα αποτελέσματά τους. Το συμπέρασμα που προκύπτει είναι ότι πολλά από τα συστήματα υποβοήθησης των τυφλών προσφέρουν περιορισμένες δυνατότητες και άλλα μπορούν να επιτύχουν εν μέρει την απαιτούμενη ακρίβεια. Κανένα, όμως, από αυτά δεν πληροί όλα τα απαραίτητα και θεμελιώδη χαρακτηριστικά που θα καθιστούσαν κάποια συσκευή ιδανική ως προς τη χρήση της. Αυτή η εργασία, λοιπόν, φανερώνει την πρόοδο της τεχνολογίας σε αυτό το επιστημονικό πεδίο, το πού βρίσκεται σήμερα και πού οδεύει με την εξέλιξή της και τονίζει, εμμέσως, την ανάγκη σχεδίασης συσκευών που εξασφαλίζουν πλήρως την ασφάλεια και την ανεξαρτησία των τυφλών και των ατόμων με απώλεια όρασης.In the context of this work, an extensive review was carried out with the most important and latest technologies of smart sticks for blind and visually impaired people. This review includes the most recent research results of international scientific literature, relevant patents and commercially available products. For each of these devices, the operating principle is briefly described and it is accompanied by the prototype of the system. The devices are then sorted according to the technologies they use and their basic features, while additional information is provided on the user research trials and their results. The resulting conclusion is that many of the blind aid systems offer limited capabilities, and others can achieve the required precision in part. None of these, however, fulfills all the essential and fundamental features that would make a device ideal for its use. This work, therefore, reveals the advancement of technology in this scientific field, where it is today and where it is progressing with its development, and indirectly emphasizes the need for designing devices that fully guarantee the safety and independence of the blind and visually impaired people

    Sensor fusion for flexible human-portable building-scale mapping

    Get PDF
    This paper describes a system enabling rapid multi-floor indoor map building using a body-worn sensor system fusing information from RGB-D cameras, LIDAR, inertial, and barometric sensors. Our work is motivated by rapid response missions by emergency personnel, in which the capability for one or more people to rapidly map a complex indoor environment is essential for public safety. Human-portable mapping raises a number of challenges not encountered in typical robotic mapping applications including complex 6-DOF motion and the traversal of challenging trajectories including stairs or elevators. Our system achieves robust performance in these situations by exploiting state-of-the-art techniques for robust pose graph optimization and loop closure detection. It achieves real-time performance in indoor environments of moderate scale. Experimental results are demonstrated for human-portable mapping of several floors of a university building, demonstrating the system's ability to handle motion up and down stairs and to organize initially disconnected sets of submaps in a complex environment.Lincoln LaboratoryUnited States. Air Force (Contract FA8721-05-C-0002)United States. Office of Naval Research (Grant N00014-10-1-0936)United States. Office of Naval Research (Grant N00014-11-1-0688)United States. Office of Naval Research (Grant N00014-12-10020

    Vision based localization: from humanoid robots to visually impaired people

    Get PDF
    Nowadays, 3D applications have recently become a more and more popular topic in robotics, computer vision or augmented reality. By means of cameras and computer vision techniques, it is possible to obtain accurate 3D models of large-scale environments such as cities. In addition, cameras are low-cost, non-intrusive sensors compared to other sensors such as laser scanners. Furthermore, cameras also offer a rich information about the environment. One application of great interest is the vision-based localization in a prior 3D map. Robots need to perform tasks in the environment autonomously, and for this purpose, is very important to know precisely the location of the robot in the map. In the same way, providing accurate information about the location and spatial orientation of the user in a large-scale environment can be of benefit for those who suffer from visual impairment problems. A safe and autonomous navigation in unknown or known environments, can be a great challenge for those who are blind or are visually impaired. Most of the commercial solutions for visually impaired localization and navigation assistance are based on the satellite Global Positioning System (GPS). However, these solutions are not suitable enough for the visually impaired community in urban-environments. The errors are about of the order of several meters and there are also other problems such GPS signal loss or line-of-sight restrictions. In addition, GPS does not work if an insufficient number of satellites are directly visible. Therefore, GPS cannot be used for indoor environments. Thus, it is important to do further research on new more robust and accurate localization systems. In this thesis we propose several algorithms in order to obtain an accurate real-time vision-based localization from a prior 3D map. For that purpose, it is necessary to compute a 3D map of the environment beforehand. For computing that 3D map, we employ well-known techniques such as Simultaneous Localization and Mapping (SLAM) or Structure from Motion (SfM). In this thesis, we implement a visual SLAM system using a stereo camera as the only sensor that allows to obtain accurate 3D reconstructions of the environment. The proposed SLAM system is also capable to detect moving objects especially in a close range to the camera up to approximately 5 meters, thanks to a moving objects detection module. This is possible, thanks to a dense scene flow representation of the environment, that allows to obtain the 3D motion of the world points. This moving objects detection module seems to be very effective in highly crowded and dynamic environments, where there are a huge number of dynamic objects such as pedestrians. By means of the moving objects detection module we avoid adding erroneous 3D points into the SLAM process, yielding much better and consistent 3D reconstruction results. Up to the best of our knowledge, this is the first time that dense scene flow and derived detection of moving objects has been applied in the context of visual SLAM for challenging crowded and dynamic environments, such as the ones presented in this Thesis. In SLAM and vision-based localization approaches, 3D map points are usually described by means of appearance descriptors. By means of these appearance descriptors, the data association between 3D map elements and perceived 2D image features can be done. In this thesis we have investigated a novel family of appearance descriptors known as Gauge-Speeded Up Robust Features (G-SURF). Those descriptors are based on the use of gauge coordinates. By means of these coordinates every pixel in the image is fixed separately in its own local coordinate frame defined by the local structure itself and consisting of the gradient vector and its perpendicular direction. We have carried out an extensive experimental evaluation on different applications such as image matching, visual object categorization and 3D SfM applications that show the usefulness and improved results of G-SURF descriptors against other state-of-the-art descriptors such as the Scale Invariant Feature Transform (SIFT) or SURF. In vision-based localization applications, one of the most expensive computational steps is the data association between a large map of 3D points and perceived 2D features in the image. Traditional approaches often rely on purely appearence information for solving the data association step. These algorithms can have a high computational demand and for environments with highly repetitive textures, such as cities, this data association can lead to erroneous results due to the ambiguities introduced by visually similar features. In this thesis we have done an algorithm for predicting the visibility of 3D points by means of a memory based learning approach from a prior 3D reconstruction. Thanks to this learning approach, we can speed-up the data association step by means of the prediction of visible 3D points given a prior camera pose. We have implemented and evaluated visual SLAM and vision-based localization algorithms for two different applications of great interest: humanoid robots and visually impaired people. Regarding humanoid robots, a monocular vision-based localization algorithm with visibility prediction has been evaluated under different scenarios and different types of sequences such as square trajectories, circular, with moving objects, changes in lighting, etc. A comparison of the localization and mapping error has been done with respect to a precise motion capture system, yielding errors about the order of few cm. Furthermore, we also compared our vision-based localization system with respect to the Parallel Tracking and Mapping (PTAM) approach, obtaining much better results with our localization algorithm. With respect to the vision-based localization approach for the visually impaired, we have evaluated the vision-based localization system in indoor and cluttered office-like environments. In addition, we have evaluated the visual SLAM algorithm with moving objects detection considering test with real visually impaired users in very dynamic environments such as inside the Atocha railway station (Madrid, Spain) and in the city center of Alcalá de Henares (Madrid, Spain). The obtained results highlight the potential benefits of our approach for the localization of the visually impaired in large and cluttered environments

    Safe and Efficient E-wayfinding (SeeWay) Assistive Navigation for the Visually Impaired

    Get PDF
    69A3551747117Despite its challenges, independent travel for blind and visually impaired (BVI) individuals is an essential component of quality of life, enabling travel to work and recreational activities. Autonomous vehicle technologies have the potential of meeting these challenges. However, efficiently and safely guiding BVI travelers between indoor environments and vehicles outdoors remains a key obstacle. In the future transportation system, assistive navigation technologies, connecting BVI travelers and vehicles, will be of extraordinary importance for BVI individuals in the context of social justice and health care/public health. Conventional research is mainly based on robotic navigation approaches through localization, mapping, and path-planning frameworks. They require heavy manual annotation of semantic information in maps and its alignment with sensor mapping. Inspired by the fact that we human beings naturally rely on language instruction inquiry and visual scene understanding to navigate in an unfamiliar environment, this study proposes a novel vision-language model-based approach for BVI navigation. It does not need heavy-labeled indoor maps and provides a Safe and Efficient E-Wayfinding (SeeWay) assistive solution for BVI individuals. The system consists of a scene-graph map construction module, a navigation path generation module for global path inference by vision-language navigation (VLN), and a navigation with obstacle avoidance module for real-time local navigation. The SeeWay system was deployed on portable iPhone devices with cloud computing assistance for the VLN model inference. The field tests show the effectiveness of the VLN global path finding and local path re-planning. Experiments and quantitative results reveal that heuristic-style instruction outperforms direction/detailed-style instructions for VLN success rate (SR), and the SR decreases as the navigation length increases
    corecore