2,827 research outputs found

    5G vehicular network resource management for improving radio access through machine learning

    Get PDF
    The current cellular technology and vehicular networks cannot satisfy the mighty strides of vehicular network demands. Resource management has become a complex and challenging objective to gain expected outcomes in a vehicular environment. The 5G cellular network promises to provide ultra-high-speed, reduced delay, and reliable communications. The development of new technologies such as the network function virtualization (NFV) and software defined networking (SDN) are critical enabling technologies leveraging 5G. The SDN-based 5G network can provide an excellent platform for autonomous vehicles because SDN offers open programmability and flexibility for new services incorporation. This separation of control and data planes enables centralized and efficient management of resources in a very optimized and secure manner by having a global overview of the whole network. The SDN also provides flexibility in communication administration and resource management, which are of critical importance when considering the ad-hoc nature of vehicular network infrastructures, in terms of safety, privacy, and security, in vehicular network environments. In addition, it promises the overall improved performance. In this paper, we propose a flow-based policy framework on the basis of two tiers virtualization for vehicular networks using SDNs. The vehicle to vehicle (V2V) communication is quite possible with wireless virtualization where different radio resources are allocated to V2V communications based on the flow classification, i.e., safety-related flow or non-safety flows, and the controller is responsible for managing the overall vehicular environment and V2X communications. The motivation behind this study is to implement a machine learning-enabled architecture to cater the sophisticated demands of modern vehicular Internet infrastructures. The inclination towards robust communications in 5G-enabled networks has made it somewhat tricky to manage network slicing efficiently. This paper also presents a proof of concept for leveraging machine learning-enabled resource classification and management through experimental evaluation of special-purpose testbed established in custom mininet setup. Furthermore, the results have been evaluated using Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and Deep Neural Network (DNN). While concluding the paper, it is shown that the LSTM has outperformed the rest of classification techniques with promising results.King Saud Universit

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future
    corecore