11,504 research outputs found

    Fundamental Limits of Spectrum Sharing for NOMA-based Cooperative Relaying

    Full text link
    Non-orthogonal multiple access (NOMA) and spectrum sharing (SS) are two emerging multiple access technologies for efficient spectrum utilization in the fifth-generation (5G) wireless communications standard. In this paper, we present a closed-form analysis of the average achievable sum-rate and outage probability for a NOMA-based cooperative relaying system (CRS) in an underlay spectrum sharing scenario. We consider a peak interference constraint, where the interference inflicted by the secondary (unlicensed) network on the primary-user (licensed) receiver (PU-Rx) should be less than a predetermined threshold. We show that the CRS-NOMA outperforms the CRS with conventional orthogonal multiple access (OMA) for large values of peak interference power at the PU-Rx.Comment: 3 figures, Accepted for presentation in GLOBECOM-NOMAT5G workshop, Abu Dhabi, 201

    An Enhanced Dynamic Spectrum Allocation Method on Throughput Maximization in Urban 5G FBMC Heterogeneous Network

    Get PDF
    Reports have shown that the demand for data managed by wireless systems is expected to grow by more than 500 exabytes by 2025 and beyond. 5G networks are predicted to meet these demands, provided that the spectrum resources are well managed. In this paper, an enhanced dynamic spectrum allocation (E-DSA) method is proposed, which incorporates a cooperative type of game theory called the Nash bargaining solution (NBS). It was assumed that there is one primary user (PU) and two secondary users (SU) in the network and their spectrum allocation was analyzed by testing the validity of the algorithm itself by using price weight factors to control the costs of the spectrum sharing. The solution was established by combining a proposed multiplexing method called the Filter Bank Multicarrier (FBMC) for 5G configuration, with the E-DSA algorithm to maximize the throughput of a heterogeneous 5G network. It was shown that the throughputs for 5G with E-DSA implementation were always higher than those of the ones without E-DSA. The simulation was done using the LabVIEW communication software and was analyzed based on a 5G urban macro and micro network configuration to validate the heterogeneity of the network

    A Spectrum Sharing Solution for the Efficient Use of mmWave Bands in 5G Cellular Scenarios

    Full text link
    Regulators all around the world have started identifying the portions of the spectrum that will be used for the next generation of cellular networks. A band in the mmWave spectrum will be exploited to increase the available capacity. In response to the very high expected traffic demand, a sharing mechanism may make it possible to use the spectrum more efficiently. In this work, moving within the European and Italian regulatory conditions, we propose the use of Licensed Spectrum Access (LSA) to coordinate sharing among cellular operators. Additionally, we show some preliminary results on our research activities which are focused on a dynamic spectrum sharing approach applied in simulated 5G cellular scenarios.Comment: to be published in IEEE International Symposium on Dynamic Spectrum Access Networks (IEEE DySPAN 2018), Seoul, Korea, Oct, 201
    corecore