22 research outputs found

    Bibliographical review on cyber attacks from a control oriented perspective

    Get PDF
    This paper presents a bibliographical review of definitions, classifications and applications concerning cyber attacks in networked control systems (NCSs) and cyber-physical systems (CPSs). This review tackles the topic from a control-oriented perspective, which is complementary to information or communication ones. After motivating the importance of developing new methods for attack detection and secure control, this review presents security objectives, attack modeling, and a characterization of considered attacks and threats presenting the detection mechanisms and remedial actions. In order to show the properties of each attack, as well as to provide some deeper insight into possible defense mechanisms, examples available in the literature are discussed. Finally, open research issues and paths are presented.Peer ReviewedPostprint (author's final draft

    Active Mapping and Robot Exploration: A Survey

    Get PDF
    Simultaneous localization and mapping responds to the problem of building a map of the environment without any prior information and based on the data obtained from one or more sensors. In most situations, the robot is driven by a human operator, but some systems are capable of navigating autonomously while mapping, which is called native simultaneous localization and mapping. This strategy focuses on actively calculating the trajectories to explore the environment while building a map with a minimum error. In this paper, a comprehensive review of the research work developed in this field is provided, targeting the most relevant contributions in indoor mobile robotics.This research was funded by the ELKARTEK project ELKARBOT KK-2020/00092 of the Basque Government

    Solving bin-packing problems under privacy preservation: Possibilities and trade-offs

    Get PDF
    We investigate the trade-off between privacy and solution quality that occurs when a kanonymized database is used as input to the bin-packing optimization problem. To investigate the impact of the chosen anonymization method on this trade-off, we consider two recoding methods for k-anonymity: full-domain generalization and partition-based single-dimensional recoding. To deal with the uncertainty created by anonymization in the bin-packing problem, we utilize stochastic programming and robust optimization methods. Our computational results show that the trade-off is strongly dependent on both the anonymization and optimization method. On the anonymization side, we see that using single dimensional recoding leads to significantly better solution quality than using full domain generalization. On the optimization side, we see that using stochastic programming, where we use the multiset of values in an equivalence class, considerably improves the solutions. While publishing these multisets makes the database more vulnerable to a table linkage attack, we argue that it is up to the data publisher to reason if such a loss of anonymization weighs up to the increase in optimization performance

    Integer-forcing architectures for uplink cloud radio access networks

    Full text link
    Consider an uplink cloud radio access network where users are observed simultaneously by several base stations, each with a rate-limited link to a central processor, which wishes to decode all transmitted messages. Recent efforts have demonstrated the advantages of compression-based strategies that send quantized channel observations to the central processor, rather than attempt local decoding. We study the setting where channel state information is not available at the transmitters, but known fully or partially at the base stations. We propose an end-to-end integer forcing framework for compression-based uplink cloud radio access, and show that it operates within a constant gap from the optimal outage probability if channel state information is fully available at the base stations.We demonstrate via simulations that our framework is competitive with state-of-the-art Wyner-Ziv-based strategies.Accepted manuscrip

    Distributed estimation techniques forcyber-physical systems

    Get PDF
    Nowadays, with the increasing use of wireless networks, embedded devices and agents with processing and sensing capabilities, the development of distributed estimation techniques has become vital to monitor important variables of the system that are not directly available. Numerous distributed estimation techniques have been proposed in the literature according to the model of the system, noises and disturbances. One of the main objectives of this thesis is to search all those works that deal with distributed estimation techniques applied to cyber-physical systems, system of systems and heterogeneous systems, through using systematic review methodology. Even though systematic reviews are not the common way to survey a topic in the control community, they provide a rigorous, robust and objective formula that should not be ignored. The presented systematic review incorporates and adapts the guidelines recommended in other disciplines to the field of automation and control and presents a brief description of the different phases that constitute a systematic review. Undertaking the systematic review many gaps were discovered: it deserves to be remarked that some estimators are not applied to cyber-physical systems, such as sliding mode observers or set-membership observers. Subsequently, one of these particular techniques was chosen, set-membership estimator, to develop new applications for cyber-physical systems. This introduces the other objectives of the thesis, i.e. to present two novel formulations of distributed set-membership estimators. Both estimators use a multi-hop decomposition, so the dynamics of the system is rewritten to present a cascaded implementation of the distributed set-membership observer, decoupling the influence of the non-observable modes to the observable ones. So each agent must find a different set for each sub-space, instead of a unique set for all the states. Two different approaches have been used to address the same problem, that is, to design a guaranteed distributed estimation method for linear full-coupled systems affected by bounded disturbances, to be implemented in a set of distributed agents that need to communicate and collaborate to achieve this goal

    Simultaneous Information and Energy Transmission in the Interference Channel

    Get PDF
    In this report, the fundamental limits of simultaneous information and energy transmission in the two-user Gaussian interference channel (G-IC) with and without feedback are fully characterized. More specifically, an achievable and converse region in terms of information andenergy transmission rates (in bits per channel use and energy-units per channel use, respectively) are identified. In both cases, with and without feedback, an achievability scheme based on power-splitting, common randomness, rate splitting, block-Markov superposition coding, and backward decoding is presented. Finally, converse regions for both cases are obtained using some of theexisting outer bounds for information transmission rates, as well as a new outer bound for the energy transmission rate.Dans ce rapport, les limites fondamentales de la transmission simultanĂ©e d’information et d’énergie dans le canal Gaussien Ă  interfĂ©rence (G-IC) avec et sans voie de retour sont dĂ©terminĂ©es. L’ensemble des dĂ©bits atteignables de transmission d’information et d’énergie (en bits par utilisation du canal et en unitĂ©s d’énergie par utilisation du canal respectivement) est identifiĂ©. Pour les deux cas, un schĂ©ma d’atteignabilitĂ© est basĂ© sur power-splitting, common randomness, rate splitting, block-Markov superposition coding, et backward decoding est prĂ©sentĂ©. Finalement, la rĂ©gion converse pour les deux cas est obtenu en utilisant des techniques de majoration dans la littĂ©rature pour les dĂ©bits d’information et aussi un majorant pour le dĂ©bit d’énergie en utilisant la loi des grands nombre

    Traversing the FFT Computation Tree for Dimension-Independent Sparse Fourier Transforms

    Full text link
    We consider the well-studied Sparse Fourier transform problem, where one aims to quickly recover an approximately Fourier kk-sparse vector x^∈Cnd\widehat{x} \in \mathbb{C}^{n^d} from observing its time domain representation xx. In the exact kk-sparse case the best known dimension-independent algorithm runs in near cubic time in kk and it is unclear whether a faster algorithm like in low dimensions is possible. Beyond that, all known approaches either suffer from an exponential dependence on the dimension dd or can only tolerate a trivial amount of noise. This is in sharp contrast with the classical FFT of Cooley and Tukey, which is stable and completely insensitive to the dimension of the input vector: its runtime is O(Nlog⁡N)O(N\log N) in any dimension dd for N=ndN=n^d. Our work aims to address the above issues. First, we provide a translation/reduction of the exactly kk-sparse FT problem to a concrete tree exploration task which asks to recover kk leaves in a full binary tree under certain exploration rules. Subsequently, we provide (a) an almost quadratic in kk time algorithm for this task, and (b) evidence that a strongly subquadratic time for Sparse FT via this approach is likely impossible. We achieve the latter by proving a conditional quadratic time lower bound on sparse polynomial multipoint evaluation (the classical non-equispaced sparse FT) which is a core routine in the aforementioned translation. Thus, our results combined can be viewed as an almost complete understanding of this approach, which is the only known approach that yields sublinear time dimension-independent Sparse FT algorithms. Subsequently, we provide a robustification of our algorithm, yielding a robust cubic time algorithm under bounded ℓ2\ell_2 noise. This requires proving new structural properties of the recently introduced adaptive aliasing filters combined with a variety of new techniques and ideas
    corecore