16 research outputs found

    Flying Free: A Research Overview of Deep Learning in Drone Navigation Autonomy

    Get PDF
    With the rise of Deep Learning approaches in computer vision applications, significant strides have been made towards vehicular autonomy. Research activity in autonomous drone navigation has increased rapidly in the past five years, and drones are moving fast towards the ultimate goal of near-complete autonomy. However, while much work in the area focuses on specific tasks in drone navigation, the contribution to the overall goal of autonomy is often not assessed, and a comprehensive overview is needed. In this work, a taxonomy of drone navigation autonomy is established by mapping the definitions of vehicular autonomy levels, as defined by the Society of Automotive Engineers, to specific drone tasks in order to create a clear definition of autonomy when applied to drones. A top–down examination of research work in the area is conducted, focusing on drone navigation tasks, in order to understand the extent of research activity in each area. Autonomy levels are cross-checked against the drone navigation tasks addressed in each work to provide a framework for understanding the trajectory of current research. This work serves as a guide to research in drone autonomy with a particular focus on Deep Learning-based solutions, indicating key works and areas of opportunity for development of this area in the future

    Recent Advances in mmWave-Radar-Based Sensing, Its Applications, and Machine Learning Techniques: A Review

    Get PDF
    Human gesture detection, obstacle detection, collision avoidance, parking aids, automotive driving, medical, meteorological, industrial, agriculture, defense, space, and other relevant fields have all benefited from recent advancements in mmWave radar sensor technology. A mmWave radar has several advantages that set it apart from other types of sensors. A mmWave radar can operate in bright, dazzling, or no-light conditions. A mmWave radar has better antenna miniaturization than other traditional radars, and it has better range resolution. However, as more data sets have been made available, there has been a significant increase in the potential for incorporating radar data into different machine learning methods for various applications. This review focuses on key performance metrics in mmWave-radar-based sensing, detailed applications, and machine learning techniques used with mmWave radar for a variety of tasks. This article starts out with a discussion of the various working bands of mmWave radars, then moves on to various types of mmWave radars and their key specifications, mmWave radar data interpretation, vast applications in various domains, and, in the end, a discussion of machine learning algorithms applied with radar data for various applications. Our review serves as a practical reference for beginners developing mmWave-radar-based applications by utilizing machine learning techniques.publishedVersio

    Amygdala Modeling with Context and Motivation Using Spiking Neural Networks for Robotics Applications

    Get PDF
    Cognitive capabilities for robotic applications are furthered by developing an artificial amygdala that mimics biology. The amygdala portion of the brain is commonly understood to control mood and behavior based upon sensory inputs, motivation, and context. This research builds upon prior work in creating artificial intelligence for robotics which focused on mood-generated actions. However, recent amygdala research suggests a void in greater functionality. This work developed a computational model of an amygdala, integrated this model into a robot model, and developed a comprehensive integration of the robot for simulation, and live embodiment. The developed amygdala, instantiated in the Nengo Brain Maker environment, leveraged spiking neural networks and the semantic pointer architecture to allow the abstraction of neuron ensembles into high-level concept vocabularies. Test and validation were performed on a TurtleBot in both simulated (Gazebo) and live testing. Results were compared to a baseline model which has a simplistic, amygdala-like model. Metrics of nearest distance and nearest time were used for assessment. The amygdala model is shown to outperform the baseline in both simulations, with a 70.8% improvement in nearest distance and, 4% improvement in the nearest time, and in real applications with a 62.4% improvement in nearest distance. Notably, this performance occurred despite a five-fold increase in architecture size and complexity

    Reliable and Efficient Cognitive Radio Communications Using Directional Antennas

    Get PDF
    Cognitive Radio (CR) is a promising solution that enhances spectrum utilization by allowing an unlicensed or Secondary User (SU) to access licensed bands in a such way that its imposed interference on a license holder Primary User (PU) is limited, and hence fills the spectrum holes in time and/or frequency domains. Resource allocation, which involves scheduling of available time and transmit power, represents a crucial problem for the performance evaluation of CR systems. In this dissertation, we study the spectral efficiency maximization problem in an opportunistic CR system. Specifically, in the first part of the dissertation, we consider an opportunistic CR system where the SU transmitter (SUtx) is equipped to a Reconfigurable Antenna (RA). RA, with the capabilities of dynamically modifying their characteristics can improve the spectral efficiency, via beam steering and utilizing the spectrum white spaces in spatial (angular) domain. In our opportunistic CR system, SUtx relies on the beam steering capability of RA to detect the direction of PU\u27s activity and also to select the strongest beam for data transmission to SU receiver (SUrx). We study the combined effects of spectrum sensing error and channel training error as well as the beam detection error and beam selection error on the achievable rates of an opportunistic CR system with a RA at SUtx. We also find the best duration for spectrum sensing and channel training as well as the best transmit power at SUtx such that the throughput of our CR system is maximized subject to the Average Transmit Power Constraint (ATPC) and Average Interference Constraint (AIC). In the second part of the dissertation, we consider an opportunistic Energy Harvesting (EH)-enabled CR network, consisting of multiple SUs and an Access Point (AP), that can access a wideband spectrum licensed to a primary network. Assuming that each SU is equipped with a finite size rechargeable battery, we study how the achievable sum-rate of SUs is impacted by the combined effects of spectrum sensing error and imperfect Channel State Information (CSI) of SUs–AP links. We also design an energy management strategy that maximizes the achievable sum-rate of SUs, subject to a constraint on the average interference that SUs can impose on the PU

    Nanophotonic design and nanomaterial assembly for next-generation optoelectronics

    Get PDF
    Nanomaterials are widely deployed in many optoelectronic technologies, with applications in solar energy harvesting, light emission, bio-sensing, computing and communications. The unique advantages of colloidal nanomaterials include size-tunable optical properties and room-temperature solution-processability, which translates to low-cost materials growth and fabrication processes associated with nanomaterials-based technology. Moreover, their lightweight and thin-film nature enables optoelectronic devices made from nanomaterials to be flexibly coated on almost any surface, which is ideal for applications such as wearable electronics and building-integrated photovoltaics. This thesis focuses on combining optical modeling, nanomaterials synthesis, nanofabrication, and advanced optical and electrical characterization techniques to develop nanomaterial-based next-generation optoelectronic devices. The first section of this thesis focuses on applying nanophotonics design principles to optically engineer solar cell and photodetector device structures for specific applications. One of our studies demonstrated a high-performing visible-blind ultraviolet (UV) thin film photodetector by introducing nanoheterojunctions for enhanced absorption and carrier injection. In another study, we used optical simulations and an effective medium model to investigate and predict light-trapping enhancements by embedding plasmonic nano-inclusions in the absorbing layer of solution-processed solar cells. We also combined thin-film interference engineering and multi-objective optimization algorithms to control the color and transparency of colloidal quantum dot (CQD) solar cells for applications in building-integrated photovoltaics and multi-junction photovoltaics. In the final study of this section, we proposed and investigated engineering photonic bands in strongly absorbing materials to tune the spectral selectivity of optoelectronic films. We then focus on developing lead sulfide CQD-based light emitting diodes (QLEDs) and solar cells with novel functionality. We developed a room-temperature-processed silver-nanowire-based transparent electrode for flexible optoelectronics. With carefully-tuned nanomaterials synthesis conditions, we fabricated PbS QLEDs with near-infrared emission that can be easily detected by inexpensive silicon-based photodetectors, paving the way for our proposed flexible transparent light emitting membrane technology, which has many target applications including in next-generation virtual reality googles and motion-capture suits for the film industry. We also built a semi-automated spray-casting system to demonstrate an all-solution-processed CQD solar cell, as a scalable and portable method for manufacturing CQD solar cells, expanding the application areas of this technology

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing

    Optimization and Communication in UAV Networks

    Get PDF
    UAVs are becoming a reality and attract increasing attention. They can be remotely controlled or completely autonomous and be used alone or as a fleet and in a large set of applications. They are constrained by hardware since they cannot be too heavy and rely on batteries. Their use still raises a large set of exciting new challenges in terms of trajectory optimization and positioning when they are used alone or in cooperation, and communication when they evolve in swarm, to name but a few examples. This book presents some new original contributions regarding UAV or UAV swarm optimization and communication aspects
    corecore