5 research outputs found

    Software development in the post-PC era : towards software development as a service

    Get PDF
    PhD ThesisEngineering software systems is a complex task which involves various stakeholders and requires planning and management to succeed. As the role of software in our daily life is increasing, the complexity of software systems is increasing. Throughout the short history of software engineering as a discipline, the development practises and methods have rapidly evolved to seize opportunities enabled by new technologies (e.g., the Internet) and to overcome economical challenges (e.g., the need for cheaper and faster development). Today, we are witnessing the Post-PC era. An era which is characterised by mobility and services. An era which removes organisational and geographical boundaries. An era which changes the functionality of software systems and requires alternative methods for conceiving them. In this thesis, we envision to execute software development processes in the cloud. Software processes have a software production aspect and a management aspect. To the best of our knowledge, there are no academic nor industrial solutions supporting the entire software development process life-cycle(from both production and management aspects and its tool-chain execution in the cloud. Our vision is to use the cloud economies of scale and leverage Model-Driven Engineering (MDE) to integrate production and management aspects into the development process. Since software processes are seen as workflows, we investigate using existing Workflow Management Systems to execute software processes and we find that these systems are not suitable. Therefore, we propose a reference architecture for Software Development as a Service (SDaaS). The SDaaS reference architecture is the first proposal which fully supports development of complex software systems in the cloud. In addition to the reference architecture, we investigate three specific related challenges and propose novel solutions addressing them. These challenges are: Modelling & enacting cloud-based executable software processes. Executing software processes in the cloud can bring several benefits to software develop ment. In this thesis, we discuss the benefits and considerations of cloud-based software processes and introduce a modelling language for modelling such processes. We refer to this language as EXE-SPEM. It extends the Software and Systems Process Engineering (SPEM2.0) OMG standard to support creating cloudbased executable software process models. Since EXE-SPEM is a visual modelling language, we introduce an XML notation to represent EXE-SPEM models in a machine-readable format and provide mapping rules from EXE-SPEM to this notation. We demonstrate this approach by modelling an example software process using EXE-SPEM and mapping it to the XML notation. Software process models expressed in this XML format can then be enacted in the proposed SDaaS architecture. Cost-e cient scheduling of software processes execution in the cloud. Software process models are enacted in the SDaaS architecture as workflows. We refer to them sometimes as Software Workflows. Once we have executable software process models, we need to schedule them for execution. In a setting where multiple software workflows (and their activities) compete for shared computational resources (workflow engines), scheduling workflow execution becomes important. Workflow scheduling is an NP-hard problem which refers to the allocation of su cient resources (human or computational) to workflow activities. The schedule impacts the workflow makespan (execution time) and cost as well as the computational resources utilisation. The target of the scheduling is to reduce the process execution cost in the cloud without significantly a ecting the process makespan while satisfying the special requirements of each process activity (e.g., executing on a private cloud). We adapt three workflow scheduling algorithms to fit for SDaaS and propose a fourth one; the Proportional Adaptive Task Schedule. The algorithms are then evaluated through simulation. The simulation results show that the our proposed algorithm saves between 19.74% and 45.78% of the execution cost, provides best resource (VM) utilisation and provides the second best makespan compared to the other presented algorithms. Evaluating the SDaaS architecture using a case study from the safety-critical systems domain. To evaluate the proposed SDaaS reference architecture, we instantiate a proof-of-concept implementation of the architecture. This imple mentation is then used to enact safety-critical processes as a case study. Engineering safety-critical systems is a complex task which involves multiple stakeholders. It requires shared and scalable computation to systematically involve geographically distributed teams. In this case study, we use EXE-SPEM to model a portion of a process (namely; the Preliminary System Safety Assessment - PSSA) adapted from the ARP4761 [2] aerospace standard. Then, we enact this process model in the proof-of-concept SDaaS implementation. By using the SDaaS architecture, we demonstrate the feasibility of our approach and its applicability to di erent domains and to customised processes. We also demonstrate the capability of EXE-SPEM to model cloud-based executable processes. Furthermore, we demonstrate the added value of the process models and the process execution provenance data recorded by the SDaaS architecture. This data is used to automate the generation of safety cases argument fragments. Thus, reducing the development cost and time. Finally, the case study shows that we can integrate some existing tools and create new ones as activities used in process models. The proposed SDaaS reference architecture (combined with its modelling, scheduling and enactment capabilities) brings the benefits of the cloud to software development. It can potentially save software production cost and provide an accessible platform that supports collaborating teams (potentially across di erent locations). The executable process models support unified interpretation and execution of processes across team(s) members. In addition, the use of models provide managers with global awareness and can be utilised for quality assurance and process metrics analysis and improvement. We see the contributions provided in this thesis as a first step towards an alternative development method that uses the benefits of cloud and Model-Driven Engineering to overcome existing challenges and open new opportunities. However, there are several challenges that are outside the scope of this study which need to be addressed to allow full support of the SDaaS vision (e.g., supporting interactive workflows). The solutions provided in this thesis address only part of a bigger vision. There is also a need for empirical and usability studies to study the impact of the SDaaS architecture on both the produced products (in terms of quality, cost, time, etc.) and the participating stakeholders

    Building a Systematic Legacy System Modernization Approach

    Full text link
    A systematic legacy system modernizing approach represents a new approach for modernizing legacy systems. Systematic legacy system modernization has software reuse as an integral part of modernization. We have developed a modernization approach which uses software architecture reconstruction to find reusable components within the legacy system. The practice of software development and modernization continues to shift towards the reuse of components from legacy systems to handle the complexities of software development. Modernization of a legacy system requires reuse of software artefacts from legacy system to conserve the business rules and improve the system鈥檚 quality attributes. Software reuse is an integral part of our systematic legacy modernization approach. Software should be considered as an asset and reuse of these assets is essential to increase the return on the development costs. Software reuse ranges from reuse of ideas to algorithms to any documents that are created during the software development life cycle. Software reuse has many potential benefits which include increased software quality, and decreased software development cost and time. Demands for lower software production and maintenance costs, faster delivery of systems and increased quality can only be met by widespread and systematic software reuse. In spite of all these benefits software reuse adoption is not widespread in the software development communities. Software reuse cannot possibly become an engineering discipline so long as issues and concerns have not been clearly understood and dealt with. We have conducted two surveys to understand the issues and concerns of software reuse in the Conventional Software Engineering (CSE) Community and the Software Product Line (SPL) Community where reuse is an integral part of the product development. The quantitative and qualitative analysis of our surveys identified the critical factors which affect and inhibit software engineers and developers adopting software reuse. Software reuse has been talked about in generic terms in software product lines. Though software reuse is a core concept in SPL it has however failed to become a standardized practice. The survey conducted on the SPL Community investigates how software reuse is adopted in SPL so as to provide the necessary degree of support for engineering software product line applications and to identify some of the issues and concerns in software reuse. The identified issues and concerns have helped us to understand the difference between software reuse in the CSE and SPL Communities. It has also given us an indication of how both communities can learn good software reuse practices from each other in order to develop a common software reuse process. Based on the outcome of our surveys we have developed a systematic software reuse process, called the Knowledge Based Software Reuse (KBSR) Process, which incorporates a Repository of reusable software assets to build a systematic legacy system modernization approach. Being able to reuse software artefacts, be it software requirement specification, design, or code, would greatly enhance software productivity and reliability. All of these software artefacts can go in the Knowledge Based Software Reuse Repository and be candidates for reuse

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation

    Anales del XIII Congreso Argentino de Ciencias de la Computaci贸n (CACIC)

    Get PDF
    Contenido: Arquitecturas de computadoras Sistemas embebidos Arquitecturas orientadas a servicios (SOA) Redes de comunicaciones Redes heterog茅neas Redes de Avanzada Redes inal谩mbricas Redes m贸viles Redes activas Administraci贸n y monitoreo de redes y servicios Calidad de Servicio (QoS, SLAs) Seguridad inform谩tica y autenticaci贸n, privacidad Infraestructura para firma digital y certificados digitales An谩lisis y detecci贸n de vulnerabilidades Sistemas operativos Sistemas P2P Middleware Infraestructura para grid Servicios de integraci贸n (Web Services o .Net)Red de Universidades con Carreras en Inform谩tica (RedUNCI

    Anales del XIII Congreso Argentino de Ciencias de la Computaci贸n (CACIC)

    Get PDF
    Contenido: Arquitecturas de computadoras Sistemas embebidos Arquitecturas orientadas a servicios (SOA) Redes de comunicaciones Redes heterog茅neas Redes de Avanzada Redes inal谩mbricas Redes m贸viles Redes activas Administraci贸n y monitoreo de redes y servicios Calidad de Servicio (QoS, SLAs) Seguridad inform谩tica y autenticaci贸n, privacidad Infraestructura para firma digital y certificados digitales An谩lisis y detecci贸n de vulnerabilidades Sistemas operativos Sistemas P2P Middleware Infraestructura para grid Servicios de integraci贸n (Web Services o .Net)Red de Universidades con Carreras en Inform谩tica (RedUNCI
    corecore