866 research outputs found

    4D trajectory optimization of commercial flight for green civil aviation

    Get PDF
    For the current development of green civil aviation, this study aims to optimize the green four-dimensional (4D) trajectory of commercial flight by taking into account conventional cost and environmental cost. Some fundamental models, efficient processing methodologies, and conventional objectives are proposed to construct the framework of trajectory optimization. Based on the environmental cost including greenhouse gas cost and harmful gas cost, green objective functions are presented. The A* algorithm and the trapezoidal collocation method are employed to optimize the lateral path and vertical profile for 4D optimization trajectory generation. A case study for the A320 from Barcelona Airport to Frankfurt Airport yields the results that the optimal costs can be obtained under different objectives and the total cost can be more optimized by adjusting the weights of environmental cost and conventional cost. The study builds an aided tool for 4D trajectory optimization and demonstrates that environmental factors and conventional factors should be taken into comprehensive consideration when constructing the flight trajectory in the future, as well as it can underpin the green and sustainable development of the air transport industry

    Multi-objective optimisation of aircraft flight trajectories in the ATM and avionics context

    Get PDF
    The continuous increase of air transport demand worldwide and the push for a more economically viable and environmentally sustainable aviation are driving significant evolutions of aircraft, airspace and airport systems design and operations. Although extensive research has been performed on the optimisation of aircraft trajectories and very efficient algorithms were widely adopted for the optimisation of vertical flight profiles, it is only in the last few years that higher levels of automation were proposed for integrated flight planning and re-routing functionalities of innovative Communication Navigation and Surveillance/Air Traffic Management (CNS/ATM) and Avionics (CNS+A) systems. In this context, the implementation of additional environmental targets and of multiple operational constraints introduces the need to efficiently deal with multiple objectives as part of the trajectory optimisation algorithm. This article provides a comprehensive review of Multi-Objective Trajectory Optimisation (MOTO) techniques for transport aircraft flight operations, with a special focus on the recent advances introduced in the CNS+A research context. In the first section, a brief introduction is given, together with an overview of the main international research initiatives where this topic has been studied, and the problem statement is provided. The second section introduces the mathematical formulation and the third section reviews the numerical solution techniques, including discretisation and optimisation methods for the specific problem formulated. The fourth section summarises the strategies to articulate the preferences and to select optimal trajectories when multiple conflicting objectives are introduced. The fifth section introduces a number of models defining the optimality criteria and constraints typically adopted in MOTO studies, including fuel consumption, air pollutant and noise emissions, operational costs, condensation trails, airspace and airport operations

    Multi-objective and multi-phase 4d trajectory optimization for climate mitigation-oriented flight planning

    Get PDF
    Aviation contribution to global warming and anthropogenic climate change is increasing every year. To reverse this trend, it is crucial to identify greener alternatives to current aviation technologies and paradigms. Research in aircraft operations can provide a swift response to new environmental requirements, being easier to exploit on current fleets. This paper presents the development of a multi-objective and multi-phase 4D trajectory optimization tool to be integrated within a Flight Management System of a commercial aircraft capable of performing 4D trajectory tracking in a Free Route Airspace context. The optimization algorithm is based on a Chebyshev pseudospectral method, adapted to perform a multi-objective optimization with the two objectives being the Direct Operating Cost and the climate cost of a climb-cruise-descent trajectory. The climate cost function applies the Global Warming Potential metric to derive a comprehensive cost index that includes the climate forcing produced by CO2 and non-CO2 emissions, and by the formation of aircraft-induced clouds. The output of the optimization tool is a set of Pareto-optimal 4D trajectories among which the aircraft operator can choose the best solution that satisfies both its economic and environmental goals

    4D commercial trajectory optimization for fuel saving and environmemtal impact reduction

    Get PDF
    The main purpose of the thesis is to optimize commercial aircraft 4D trajectories to improve flight efficiency and reduce fuel consumption and environmental impact caused by airliners. The Trajectory Optimization Problem (TOP) technique can be used to accomplish this goal. The formulation of the aircraft TOP involves the mathematical model of the system (i.e., dynamics model, performance model, and emissions model of the aircraft), Performance Index (PI), and boundary and path constraints of the system. Typically, the TOP is solved by a wide range of numerical approaches. They can be classified into three basic classes of numerical methods: indirect methods, direct methods, and dynamic programming. In this thesis, several instances of problems were considered to optimize commercial aircraft trajectories. Firstly, the problem of optimal trajectory generation from predefined 4D waypoint networks was considered. A single source shortest path algorithm (Dijkstra’s algorithm) was applied to generate the optimal aircraft trajectories that minimize aircraft fuel burn and total trip time between the initial and final waypoint in the networks. Dijkstra’s Algorithm (DA) successfully found the path (trajectory) with the lowest cost (i.e., fuel consumption, and total trip time) from the predefined 4D waypoint networks. Next, the problem of generating minimum length optimal trajectory along a set of predefined 4D waypoints was considered. A cubic spline parameterization was used to solve the TOP. The state vector, its time derivative, and control vector are parameterized using Cubic Spline Interpolation (CSI). Consequently, the objective function and constraints are expressed as functions of the value of state and control at the temporal nodes, this representation transforms the TOP into a Nonlinear Programming (NLP) problem, which is then solved numerically using a well-established NLP solver. The proposed method generated a smooth 4D optimal trajectory with very accurate results. Following, the problem considers generating optimal trajectories between two 4D waypoints. Dynamic Programming (DP) a well-established numerical method was considered to solve this problem. The traditional DP bears some shortcomings that prevent its use in many practical real-time implementations. This thesis proposes a Modified Dynamic Programming (MDP) approach which reduces the computational effort and overcomes the drawbacks of the traditional DP. The proposed MDP approach was successfully implemented to generate optimal trajectories that minimize aircraft fuel consumption and emissions in several case studies, the obtained optimal trajectories are then compared with the corresponding reference commercial flight trajectory for the same route in order to quantify the potential benefit of reduction of aircraft fuel consumption and emissions. The numerical examples demonstrate that the MDP can successfully generate fuel and emissions optimal trajectory with little computational effort, which implies it can also be applied to online trajectory generation. Finally, the problem of predicting the fuel flow rate from actual flight data or manual data was considered. The Radial Basis Function (RBF) neural network was applied to predict the fuel flow rate in the climb, cruise, and descent phases of flight. In the RBF neural network, the true airspeed and flight altitude were taken as the input parameters and the fuel flow rate as the output parameter. The RBF neural network produced a highly accurate fuel flow rate model with a high value of coefficients of determination, together with the low relative approximation errors. Later on, the resulted fuel flow rate model was used to solve a 4D TOP by optimizing aircraft green cost between two 4D waypoints.O principal objetivo desta tese é otimizar as trajetórias em 4D de aeronaves comerciais, de forma a melhorar a eficiência de voo e reduzir o consumo de combustível e o impacto ambiental causado pelos aviões. A técnica de otimização de trajetória pode ser utilizada para atingir este objetivo. A formulação do problema de otimização de trajetória de uma aeronave envolve o modelo matemático do sistema (isto é, modelo de dinâmica, modelo de desempenho, e modelo de emissões de aeronaves), a função objetiva e os limites e restrições do sistema. Normalmente, o problema de otimização de trajetória é solucionado por uma ampla variedade de abordagens numéricas, que podem ser classificadas em três classes básicas de métodos numéricos: métodos indiretos, métodos diretos e programação dinâmica. Nesta tese, foram consideradas várias instâncias de problemas para otimizar trajetórias de aeronaves comerciais. Em primeiro lugar, foi considerado um problema de geração de trajetória ótima em 4D a partir de redes de waypoints predefinidas. Para tal, foi aplicado um algoritmo de single source shortest path (neste caso, algoritmo de Dijkstra), de forma a gerar trajetórias ótimas que minimizem o consumo de combustível da aeronave e o seu tempo total de viagem. O algoritmo de Dijkstra encontrou com sucesso a trajetória com menor custo, isto é, a trajetória de menor consumo de combustível e menor tempo total de viagem, a partir da rede predefinida de waypoints. Em seguida, foi considerado o problema de gerar uma trajetória ótima em 4D de comprimento mínimo ao longo de um conjunto de waypoints predefinidos. Para tal, foi utilizada uma parametrização da spline cúbica. O vetor de estado, a sua derivada e o vetor de controlo são parametrizados utilizando a interpolação cúbica da spline. Consequentemente, a função objetivo e as restrições são expressas como funções do valor de estado e controlo nos nós temporais. Esta representação transforma o problema de otimização de trajetória em um problema de programação não-linear, que por sua vez, é resolvido numericamente por um solucionador já bem estabelecido de programação não-linear. O método proposto gerou uma trajetória ótima em 4D com resultados precisos. Posteriormente, considerou-se o problema de geração de trajetórias ótimas em 4D entre dois waypoints. Para solucionar este problema foi utilizado a programação dinâmica que é um método numérico já bem estabelecido. A programação dinâmica apresenta algumas deficiências que impedem o seu uso em muitas aplicações práticas de tempo-real. Por isso, esta tese propõe uma abordagem de programação dinâmica modificada que reduz o esforço computacional e supera as desvantagens do Programação Dinâmica tradicional. A abordagem programação dinâmica modificada proposta, foi implementada com sucesso em vários casos de estudo, em que foram geradas trajetórias ótimas que minimizam o consumo de combustível da aeronave e as suas emissões. Estas trajetórias são, posteriormente, comparadas com a trajetória de voo comercial de referência, para quantificar a potencial redução do consumo de combustível da aeronave e das suas emissões. Os exemplos numéricos demonstram que a programação dinâmica modificada pode gerar com sucesso e com pouco esforço computacional trajetórias ótimas para o combustível e as emissões, o que sugere que este método pode ser aplicado em situações online, isto é, geração de trajetórias online. Por fim, foi considerado o problema de previsão da taxa temporal de consumo de combustível (FF) a partir de dados de voo reais. A rede neural da função de base radial (RBF) foi aplicada para prever a essa mesma taxa temporal nas fases de voo: subida, cruzeiro e descida. Na aplicação da rede neural RBF, a velocidade real e a altitude de voo foram consideradas como parâmetros de entrada e a FF foi considerada como parâmetro de saída. A rede neural RBF foi capaz de produzir um modelo adequado para estimar corretamente essa taxa temporal, com um elevado valor de coeficientes de determinação, juntamente com baixos valores nos erros relativos de aproximação. Posteriormente, este modelo de FF foi utilizado para resolver o problema de otimização de trajetórias em 4D, em que o custo total entre dois waypoints foi otimizado

    Exploiting wind to optimize flight paths for greener commercial flight operations

    Get PDF
    Trajectory Based Operations (TBO) has been identified by ICAO as a key aviation evolution with significant developments in Next Gen Flight Management Systems (FMS) to communicate with ground based 4DT Air Traffic Management (ATM) system of the future. The Next generation ATM and FMS systems will include the capability of generating 4D trajectories to increase aircraft efficiency and reduce emissions. Natural resources, such as the wind, can be exploited to reduce the aircraft's fuel usage and travel time while improving its operational efficiency. These benefits are realized if trajectories are formulated to maximise the time in tailwind scenarios. The results presented here quantify the fuel and time savings of a typical Australasian route using a simulated wind field as an input to the optimization problem. Minimum fuel burn and emissions are achieved by minimising flight time at constant cruise speed. The attainable savings appeal to aircraft operators as they reduce operational cost. Optimization algorithms to formulate efficient flight trajectories are hence an essential tool in reducing aviation's carbon footprint. Future research will focus on the implementation of 4DT operations and associated logistics. Simulations of common commercial and international flight routes from departure to destination using 4DT intent negotiation and validation routines will allow for an accurate evaluation of the potential savings in fuel and reduction in emissions

    CNS+A capabilities for the integration of unmanned aircraft in controlled airspace

    Get PDF
    In this paper, the system requirements for the integration of Remotely Piloted Aircraft Systems (RPAS) in controlled airspace regions are discussed. The specificities in terms of Air Traffic Management (ATM) level of service, jurisdiction for deconfliction duties and prevalent traffic characteristics are analysed to support the identification of operational and equipage requirements for RPAS developers. Communication, Navigation, Surveillance, ATM and Avionics (CNS+A) equipment play an essential role in airspace regions characteried by high levels of Air Traffic Services (ATS) and a higher probability of traffic conflicts. A denser route structure and a more frequent occurrence of traffic conflicts mandate high CNS performance, as the deconfliction by ATM crucially relies on accurate and reliable CNS information. Notwithstanding, the reduced jurisdiction of aircraft in deconfliction duties also offers an opportunity to RPAS developers, as it relieves the requirements for on-board expert processing

    On the generation of environmentally efficient flight trajectories

    Get PDF
    To achieve a sustainable future for air transport, the International Civil Aviation Organization has proposed goals for reductions in community noise impact, local air quality and climate impacting emissions. The goals are intended to be achieved through advances in engine design, aircraft design and through improvements in aircraft operational procedures. This thesis focuses on operational procedures, and considers how trajectory generation methods can be used to support flight and airspace planners in the planning and delivery of environmentally efficient flight operations. The problem of planning environmentally efficient trajectories is treated as an optimal control problem that is solved through the application of a direct method of trajectory optimisation combined with a stochastic Non Linear Programming (NLP) solver. Solving the problem in this manner allows decision makers to explore the relationships between how aircraft are operated and the consequent environmental impacts of the flights. In particular, this thesis describes a multi-objective optimisation methodology intended to support the planning of environmentally efficient climb and descent procedures. The method combines environmental, trajectory and NLP methods to generate Pareto fronts between several competing objectives. It is shown how Pareto front information can then be used to allow decision makers to make informed decisions about potential tradeoffs between different environmental goals. The method is demonstrated through its application to a number of real world, many objective procedure optimisation studies. The method is shown to support in depth analysis of the case study problems and was used to identify best balance procedure characteristics and procedures in an objective, data driven approach not achievable through existing methods. Driven by operator specific goals to reduce CO2 emissions, work in this thesis also looks at trajectory based flight planning of CO2 efficient trajectories. The results are used to better understand the impacts of ATM constraints and recommended procedures on both the energy management and fuel efficiency of flights. Further to this, it is shown how trajectory optimisation methods can be applied to the analysis of conventional assumptions on fuel efficient aircraft operations. While the work within is intended to be directly relevant to the current air traffic management system, both consideration and discussion is given over to the evolution and continued relevance of the work to the Single European Sky trajectory based concept of operation

    ICAO action plan on emissions reduction: Republic of Bulgaria

    Get PDF
    ICAO environmental action plans present States' measures to reduce emissions from international aviation. Action plans are a practical means for States to communicate to ICAO information on their activities to address CO2 emissions from international civil aviation. The level of detail of the information contained in an action plan demonstrates the effectiveness of actions and will ultimately enable ICAO to measure global progress towards meeting the goals set by Assembly Resolution A37-19

    4D Fuel Optimal Trajectory Generation from Waypoint Networks

    Get PDF
    The purpose of this thesis is to develop a trajectory optimization algorithm that finds a fuel optimal trajectory from 4D waypoint networks, where the arrival time is specified for each waypoint in the network. Generating optimal aircraft trajectory that minimizes fuel burn and associated environmental emissions helps the aviation industry cope with increasing fuel costs and reduce aviation induced climate change, as CO2 is directly related to the amount of fuel burned, therefore reduction in fuel burn implies a reduction in CO2 emissions as well. A single source shortest path algorithm is presented to generate the optimal aircraft trajectory that minimizes the total fuel burn between the initial and final waypoint in pre-defined 4D waypoint networks. In this work the 4D waypoint networks only consist of waypoints for climb, cruise and descent phases of the flight without the takeoff and landing approach. The fuel optimal trajectory is generated for three different lengths of flights (short, medium and long haul flight) for two different commercial aircraft considering no wind. The Results about the presented applications show that by flying a fuel optimal trajectory, which was found by implying a single source shortest path algorithm (Dijkstra’s algorithm) can lead to reduction of average fuel burn of international flights by 2.8% of the total trip fuel. By using the same algorithm in 4D waypoints networks it is also possible to generate an optimal trajectory that minimizes the flight time. By flying this trajectory average of 2.6% of total travel time can be saved, depends on the trip length and aircraft types.Esta tese tem como objetivo desenvolver um algoritmo de otimização de trajetória que permita encontrar uma trajetória de combustível ótima em uma redes de waypoint em 4D, onde o tempo de chegada é específico para cada waypoint da rede. Ao criar uma trajetória ótima que minimize o consumo de combustível da aeronare e as suas respetivas emissões poluentes, ajuda a indústria da aviação não só a lidar com o aumento nos custos dos combustíveis, bem como a reduzir a sua contribuição nas alterações climáticas, pois o CO2 está diretamente relacionado com a quantidade de combustível queimado, logo uma redução no seu consumo implica que haja também uma redução nas emissões de CO2. O algoritmo “single source shortest path” é utilizado de forma a gerar uma trajetória ótima, que minimize o consumo de combustível entre o waypoint inicial e final de redes pré-definida de waypoint em 4D. Neste trabalho, esta redes consiste num conjunto de waypoints inseridos apenas nas fases de voo de subida, cruzeiro e descida, ignorando assim as fases de descolagem e aterragem. A trajetória de combustível ótima é criada para dois aviões comerciais diferentes em três distâncias de voo também diferentes (voo curto, médio e longo), sem considerar o vento. Os resultados deste trabalho mostram que ao voar numa trajetória de combustível ótima, obtida através do algoritmo “single source shortest path” (Dijkstra’s algorithm), é possível reduzir o consumo total de combustível numa média de 2.8%, em voos internacionais. Utilizando o mesmo algoritmo numa rede de waypoints em 4D é também possível encontrar uma trajetória ótima que minimize o tempo de voo numa media de 2.6% do tempo total, consoante a distância da viagem e do tipo de aeronave

    An integrated framework for trajectory optimisation, prediction and parameter estimation for advanced aircraft separation concepts

    Get PDF
    Since the birth of commercial aviation, the applications and benefits of aircraft have grown immensely. This, in perfect synchrony with the average increase of purchasing power of the society, has rocketed the number of aircraft flying the skies. This increase comes at a cost, both in environmental and airspace capacity aspects. This thesis works towards the alleviation of the issues caused by the high number of flights, proposing concepts and mechanisms to safely increase the airspace capacity whilst minimising the environmental impact of aviation. This incredibly complex and neverending pursuit is omnipresent in the literature. One promising topic is the four dimensional (4D) trajectory optimisation with higher levels of automation. The research in this PhD thesis proposes an integrated framework for trajectory optimisation, trajectory prediction and parameter estimation, with which new air traffic management concepts can be assessed. This framework has the flexibility to optimise trajectories ranging from a free-flight to a very strict route structure, from a complete freedom at the vertical profile to a specific adherence to flight levels, etc. The 4D optimisation strategy results in a trajectory that complies with the scenario characteristics, which minimises a given functional objective such as the operational cost, time, fuel, etc. Furthermore, the same framework is used in a novel strategy to perform adaptive trajectory prediction (with conformance monitoring), and to estimate unknown parameters of an aircraft. To resolve this problem, an optimal control problem is formulated and converted into a non-linear programming (NLP) problem with direct collocation methods, and numerically resolved by an NLP solver. A comprehensive software architecture is presented, taking benefit from the best of two worlds to enable the flexibility and genericity of the developed optimisation framework: an object-oriented software coding language (C++) and a very powerful algebraic modelling language (GAMS). Based on this optimisation framework, the thesis produces operationally relevant results, demonstrating that the framework can cope with a variety of problems, and contributing to the ultimate goal of safely increasing airspace capacity and air traffic efficiency. Illustrative examples are presented focussed on the departure phase within a terminal manoeuvring area. First, an assessment of the efficiency of required times of arrival as a ways to increase air traffic capacity is presented, providing results on the cost in terms of fuel and time of imposing these time requirements within a TMA (which can get to surprisingly low figures), and its effectiveness for traffic separation. Second, the implementation of an aircraft separation methodology is presented, where an intruder trajectory is predicted and the ownship calculates its own optimal trajectory that deviates from it. A conformance monitoring strategy is implemented to ensure that the separation is maintained throughout the flight, acknowledging deviations, and reacting accordingly. Third, the prediction of the intruder trajectory is enhanced by the estimation of an equivalent mass using known past states. An impressive accuracy is achieved early after the beginning of the flight. Finally, the implementation of a multi-aircraft separation strategy is presented, where multiple aircraft are simultaneously optimised in the same optimisation problem, all whilst maintaining separation between them. The complexity of the alignment of aircraft coordinates for a fair comparison is tackled from a novel perspective. Conclusively, the different strategies for aircraft separation are compared, and quite surprisingly the best results for each strategy are quite similar. Indeed, the increase in operational cost that the different strategies present (when compared to the individual optimal trajectory) is negligible and alledgedly better than the current air traffic control separation paradigm.Des del naixement de l’aviació comercial, les aplicacions i beneficis dels avions han crescut immensament. Això, en perfecta sincronia amb l’augment mitjà del poder adquisitiu de la societat, ha augmentat el nombre d’avions que volen pel cel. Aquest augment comporta, tanmateix, un cost, tant en aspectes mediambientals com en la capacitat de l’espai aeri. Aquesta tesi és concebuda per treballar en l’alleujament dels problemes que resulten de l’elevat nombre de vols, proposant nous conceptes i mecanismes per augmentar la capacitat de l’espai aeri amb seguretat i alhora minimitzar l’impacte ambiental de l’aviació. Aquesta recerca, complexa però extremadament necessària, és la protagonista d’una gran quantitat de treballs científics publicats. Des de la propulsió, fins a les aerostructures i la gestió del transit aeri, avui en dia es dedica un gran esforç a la reducció de l’impacte ambiental, així com a l’augment de la seguretat i la capacitat de l’espai aeri. Un tema prometedor és la introducció de nous conceptes d’operació que aprofiten al màxim l’optimització de trajectòries en les quatre dimensions (4D) i nivells d’automatització més elevats, tant per a sistemes de bord com de terra. Conceptes com ara operacions de perfil vertical continu són cada cop més utilitzats en el dia a dia. També, la reducció de la distancia recorreguda dels avions mitjançant rutes més directes esdevé una realitat com més va més evident. Per tal d’abastar un àmbit més ampli, els sistemes embarcats i de terra hauran d’esser actualitzats. És per això que s’hauria d’explorar minuciosament la quantificació dels beneficis esperats per als nou conceptes que es proposin, abans d’introduir-los a escala local o global. La investigació d’aquesta tesi doctoral proposa un sistema integrat per a l’optimització de trajectòries, la predicció, i l’estimació de paràmetres, amb el qual es poden avaluar nous conceptes de gestió del trànsit aeri. Aquest sistema té la flexibilitat d’optimitzar trajectòries que van des d’un vol lliure (free-flight) fins a una estructura de ruta molt estricta, des d’una llibertat completa al perfil vertical fins a una adhesió especifica als nivells de vol, etc. La definició d’escenaris és prou genèrica com per permetre una àmplia varietat de tipologies de vol, fases de vol, fases de rendiment, restriccions al llarg de la trajectòria, entre molts altres aspectes. L’estratègia d’optimització 4D d´ona com a resultat una trajectòria que no només compleix les característiques del vol (i de l’entorn configurat), sinó que també minimitza un objectiu funcional determinat, com ara el cost operatiu, el temps, el combustible, etc. I com ja s’ha mencionat breument, aquesta mateixa estratègia d’optimització s’adapta lleugerament per presentar una innovadora estratègia per realitzar prediccions de trajectòria adaptativa (amb monitoratge de conformitat) i per estimar paràmetres crucials inicialment desconeguts d’un avió. Per resoldre un problema tan complex, es formula un problema de control òptim i es converteix en un problema de programació no lineal (NLP) amb mètodes de col·locació directa. Aquest problema es resol numèricament mitjançant un programari de resolució de problemes NLP i se n’extreuen els resultats per a l’anàlisi. Es presenta una arquitectura de programari integral, aprofitant el millor de dos mons: un llenguatge de programació orientat a objectes (C++) i un llenguatge matemàtic algèbric molt potent (GAMS). La interacció entre aquests dos mons permet la flexibilitat i la genericitat del sistema d’optimització desenvolupat A partir d’aquest sistema d’optimització, els diferents capítols de la tesi produeixen resultats operatius rellevants. Això no només demostra que el sistema pot fer front a una gran varietat de problemes, sinó que també contribueix a l’objectiu final d’augmentar de forma segura la capacitat de l’espai aeri i l’eficiència del transit aeri. Es presenten diferents casos d’ ´ us i exemples il·lustratius centrats en enlairaments dins l’àrea de maniobra terminal (TMA). Concretament, quatre etapes formen aquesta part de la tesi. Primer, es presenta una avaluació de l’eficiència dels temps requerits d’arribada (RTA) com a forma d’augmentar la capacitat del transit aeri. Aquest estudi proporciona resultats sobre el cost en termes de combustible i temps d’imposar aquests requisits de temps dins d’una TMA (que pot arribar a xifres sorprenentment baixes). A més, mostra com d’efectiva pot ser aquesta estratègia per a la separació del transit. En segon lloc, es presenta la implementació d’una metodologia de separació d’avions mitjançant el sistema d’optimització. En ella, una aeronau (l’aeronau) genera una predicció de trajectòria d’un avio extern amb qui preveu tenir un conflicte proper (l’intrús). Seguidament, l’aeronau calcula la seva pròpia trajectòria òptima que es desvia d’aquella predita de l’intrús. S’implementa una estratègia de control de la conformitat per assegurar que la separació es mantingui durant tot el vol, reconeixent les desviacions i reaccionant en conseqüència. En tercer lloc, la predicció de la trajectòria intrusa es veu millorada per l’estimació d’una massa equivalent mitjançant estats passats coneguts (el deixant). Com era d’esperar, com més llarg sigui aquest deixant, millor serà l’estimació de la massa. Tanmateix, s’aconsegueix una precisió impressionant molt poc després de l’inici del vol. Finalment, es presenta la implementació d’una estratègia de separació de múltiples aeronaus. En aquesta formulació, s’optimitzen simultàniament les trajectòries de diversos avions dins el mateix problema d’optimització, mantenint la separació entre ells. La complexitat de l’alineació temporal de les coordenades d’avions per a una comparació justa s’aborda des d’una perspectiva innovadora. En conclusió, es comparen les diferents estratègies de separació d’avions i, sorprenentment, els millors resultats de cada estratègia són força similars. De fet, l’augment del cost operatiu que presenten les diferents estratègies (en comparació amb la trajectòria òptima individual) és insignificant i sempre millor que el paradigma actual de separació del control de trànsit aeri.Postprint (published version
    corecore