473 research outputs found

    Modelling and Simulation of Lily flowers using PDE Surfaces

    Get PDF
    This paper presents a partial differential equation (PDE)-based surface modelling and simulation framework for lily flowers. We use a PDE-based surface modelling technique to represent shape of a lily flower and PDE-based dynamic simulation to animate blossom and decay processes of lily flowers. To this aim, we first automatically construct the geometry of lily flowers from photos to obtain feature curves. Second, we apply a PDE-based surface modelling technique to generate sweeping surfaces to obtain geometric models of the flowers. Then, we use a physics-driven and data-based method and introduce the flower shapes at the initial and final positions into our proposed dynamic deformation model to generate a realistic deformation of flower blossom and decay. The results demonstrate that our proposed technique can create realistic flower models and their movements and shape changes against time efficiently with a small data size

    FlowerPhenoNet: Automated Flower Detection from Multi-View Image Sequences Using Deep Neural Networks for Temporal Plant Phenotyping Analysis

    Get PDF
    A phenotype is the composite of an observable expression of a genome for traits in a given environment. The trajectories of phenotypes computed from an image sequence and timing of important events in a plant’s life cycle can be viewed as temporal phenotypes and indicative of the plant’s growth pattern and vigor. In this paper, we introduce a novel method called FlowerPhenoNet, which uses deep neural networks for detecting flowers from multiview image sequences for high-throughput temporal plant phenotyping analysis. Following flower detection, a set of novel flower-based phenotypes are computed, e.g., the day of emergence of the first flower in a plant’s life cycle, the total number of flowers present in the plant at a given time, the highest number of flowers bloomed in the plant, growth trajectory of a flower, and the blooming trajectory of a plant. To develop a new algorithm and facilitate performance evaluation based on experimental analysis, a benchmark dataset is indispensable. Thus, we introduce a benchmark dataset called FlowerPheno, which comprises image sequences of three flowering plant species, e.g., sunflower, coleus, and canna, captured by a visible light camera in a high-throughput plant phenotyping platform from multiple view angles. The experimental analyses on the FlowerPheno dataset demonstrate the efficacy of the FlowerPhenoNet

    A Descriptive Study of Wild Bees (Hymenoptera: Apoidea: Apiformes) and Angiosperms in a Tallgrass Prairie Corridor of Southeastern Nebraska

    Get PDF
    The presence of diverse bee communities in an ecosystem is vital for maintaining healthy plant communities, promoting habitat resilience, and supporting sustainable agricultural production and urbanization. Approximately 20,000 known species of bees exist worldwide and assist with the successful reproduction of nearly 80% of Earth’s flowering plants by providing pollination services. In the US, wild bee declines have led to increased monitoring efforts for bees but there remain critical data gaps in prairies of the Great Plains ecoregion. Specific to the Tallgrass prairie where only 1-3% remains in native vegetation, the Nebraska Wildlife Action Plan has identified the loss of pollinators as a key stressor as well as a lack of sufficient data from which to monitor this stressor. This thesis seeks to 1) review current literature on the status of prairie ecosystems and the interdependency of wild bees, 2) establish and describe baseline data on wild bees and flowering forb communities, and examine their existing interactions in southeastern Nebraska Tallgrass prairies, 3) assess how the variation in vegetation cover influences the richness and abundance of wild bees, and 4) provide an extension guide highlighting a bee’s role in conserving the biological diversity of prairies. Over a period of 2 years, 85 species of wild bees and 114 species of flowering forbs were identified, and a preference index was calculated (based off of the abundance of bee visits to observed flowering forbs) to improve pollinator seed mixtures and inform future restoration efforts. Additionally, this thesis presents evidence that newly-restored prairies seeded with high diversity mixes support higher richness and abundance of wild bees compared to remnant prairies, however remnant prairies provide consistent support to wild bees on a temporal scale. Collectively, the resulting information of this thesis will aid in the design, management and reconstruction of the Prairie Corridor on Haines Branch (Lincoln, Nebraska) by providing recommendations tailored to enhance and sustain diverse bee communities. Advisor: Judy Y. Wu-Smar

    Cellular localization of ROS and NO in olive reproductive tissues during flower development

    Get PDF
    14 pages, 9 figures, 14 additional files.[Background] Recent studies have shown that reactive oxygen species (ROS) and nitric oxide (NO) are involved in the signalling processes taking place during the interactions pollen-pistil in several plants. The olive tree (Olea europaea L.) is an important crop in Mediterranean countries. It is a dicotyledonous species, with a certain level of self-incompatibility, fertilisation preferentially allogamous, and with an incompatibility system of the gametophytic type not well determined yet. The purpose of the present study was to determine whether relevant ROS and NO are present in the stigmatic surface and other reproductive tissues in the olive over different key developmental stages of the reproductive process. This is a first approach to find out the putative function of these signalling molecules in the regulation of the interaction pollen-stigma.[Results] The presence of ROS and NO was analyzed in the olive floral organs throughout five developmental stages by using histochemical analysis at light microscopy, as well as different fluorochromes, ROS and NO scavengers and a NO donor by confocal laser scanning microscopy. The "green bud" stage and the period including the end of the "recently opened flower" and the "dehiscent anther" stages displayed higher concentrations of the mentioned chemical species. The stigmatic surface (particularly the papillae and the stigma exudate), the anther tissues and the pollen grains and pollen tubes were the tissues accumulating most ROS and NO. The mature pollen grains emitted NO through the apertural regions and the pollen tubes. In contrast, none of these species were detected in the style or the ovary.[Conclusion] The results obtained clearly demonstrate that both ROS and NO are produced in the olive reproductive organs in a stage- and tissue- specific manner. The biological significance of the presence of these products may differ between early flowering stages (defence functions) and stages where there is an intense interaction between pollen and pistil which may determine the presence of a receptive phase in the stigma. The study confirms the enhanced production of NO by pollen grains and tubes during the receptive phase, and the decrease in the presence of ROS when NO is actively produced.This work was supported by research projects P06-AGR-01719 (Junta de Andalucía) and BFU2008-00629 (MCI). AZ thanks the CSIC for providing a JAE grant.Peer reviewe

    An integrative study on asphondylia spp. (diptera: Cecidomyiidae), causing flower galls on lamiaceae, with description, phenology, and associated fungi of two new species

    Get PDF
    An integrative study on some species of Asphondylia was carried out. Two species of gall midges from Italy, Asphondylia rivelloi sp. nov. and Asphondylia micromeriae sp. nov. (Diptera: Cecidomyiidae), causing flower galls respectively on Clinopodium vulgare and Micromeria graeca (Lamiaceae), are described and illustrated. The characteristics of each developmental stage and induced galls are described, which allowed the discrimination of these new species in the complex of Asphondylia developing on Lamiaceae plants. Molecular data based on sequencing both nuclear (ITS2 and 28S-D2) and mitochondrial (COI) genes are also provided in support of this discrimination. Phylogeny based on nuclear markers is consistent with the new species, whereas COI phylogeny suggests introgression occurring between the two species. However, these species can also be easily identified using a morphological approach. Phenology of host plants and gall midges are described, and some peculiar characteristics allow the complete and confident discrimination and revision of the treated species. Gall-associated fungi were identified as Botryosphaeria dothidea, Alternaria spp., and Cladosporium spp

    Biosynthesis of ternary NiCoFe2_2O4_4 nanoflowers: investigating their 3D structure and potential use in gene delivery

    Get PDF
    Multicomponent nanoparticle systems are known for their varied properties and functions, and have shown potential as gene nanocarriers. This study aims to synthesize and characterize ternary nickel–cobalt-ferrite (NiCoFe2_2O4_4) nanoparticles with the potential to serve as gene nanocarriers for cancer/gene therapy. The biogenic nanocarriers were prepared using a simple and eco-friendly method following green chemistry principles. The physicochemical properties of the nanoparticles were analyzed by X-ray diffraction, vibrating sample magnetometer, X-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller. To evaluate the morphology of the nanoparticles, the field emission scanning electron microscopy with energy dispersive X-Ray spectroscopy, high-resolution transmission electron microscopy imaging, and electron tomography were conducted. Results indicate the nanoparticles have a nanoflower morphology with a mesoporous nature and a cubic spinel structure, where the rod and spherical nanoparticles became rose-like with a specific orientation. These nanoparticles were found to have minimal toxicity in human embryonic kidney 293 (HEK-293 T) cells at concentrations of 1 to 250 µg·mL–1. We also demonstrated that the nanoparticles could be used as gene nanocarriers for delivering genes to HEK-293 T cells using an external magnetic field, with optimal transfection efficiency achieved at an N/P ratio of 2.5. The study suggests that biogenic multicomponent nanocarriers show potential for safe and efficient gene delivery in cancer/gene therapy
    corecore