38 research outputs found

    Use of IBM Collaborative Lifecycle Management Solution to Demonstrate Traceability for Small, Real-World Software Development Project

    Get PDF
    The Standish Group Study of 1994 showed that 53 percent of software projects failed outright and another 31 percent were challenged by extreme budget and/or time overrun. Since then different responses to the high rate of software project failures have been proposed. SEI’s CMMI, the ISO’s 9001:2000 for software development, and the IEEE’s JSTD-016 are some examples of such responses. Traceability is the one common feature that these software development standards impose. Over the last decade, software and system engineering communities have been researching subjects such as developing more sophisticated tooling, applying information retrieval techniques capable of semi-automating the trace creation and maintenance process, developing new trace query languages and visualization techniques that use trace links, applying traceability in specific domains such as Model Driven Development, product line systems and agile project environment. These efforts have not been in vain. The 2012 CHAOS results show an increase in project success rate of 39% (delivered on time, on budget, with required features and functions), and a decrease of 18% in the number of failures (cancelled prior to completion or delivered and never used). Since research has shown traceability can improve a project’s success rate, the main purpose of this thesis is to demonstrate traceability for a small, real-world software development project using IBM Collaborative Lifecycle Management. The objective of this research was fulfilled since the case study of traceability was described in detail as applied to the design and development of the Value Adjustment Board Project (VAB) of City of Jacksonville using the scrum development approach within the IBM Rational Collaborative Lifecycle Management Solution. The results may benefit researchers and practitioners who are looking for evidence to use the IBM CLM solution to trace artifacts in a small project

    A document based traceability model for test management

    Get PDF
    Software testing has became more complicated in the emergence of distributed network, real-time environment, third party software enablers and the need to test system at multiple integration levels. These scenarios have created more concern over the quality of software testing. The quality of software has been deteriorating due to inefficient and ineffective testing activities. One of the main flaws is due to ineffective use of test management to manage software documentations. In documentations, it is difficult to detect and trace bugs in some related documents of which traceability is the major concern. Currently, various studies have been conducted on test management, however very few have focused on document traceability in particular to support the error propagation with respect to documentation. The objective of this thesis is to develop a new traceability model that integrates software engineering documents to support test management. The artefacts refer to requirements, design, source code, test description and test result. The proposed model managed to tackle software traceability in both forward and backward propagations by implementing multi-bidirectional pointer. This platform enabled the test manager to navigate and capture a set of related artefacts to support test management process. A new prototype was developed to facilitate observation of software traceability on all related artefacts across the entire documentation lifecycle. The proposed model was then applied to a case study of a finished software development project with a complete set of software documents called the On-Board Automobile (OBA). The proposed model was evaluated qualitatively and quantitatively using the feature analysis, precision and recall, and expert validation. The evaluation results proved that the proposed model and its prototype were justified and significant to support test management

    A Tool for Automated Reasoning about Traces Based on Configurable Formal Semantics

    Get PDF
    We present Tarski, a tool for specifying configurable trace semantics to facilitate automated reasoning about traces. Software development projects require that various types of traces be modeled between and within development artifacts. For any given artifact (e.g., requirements, architecture models and source code), Tarski allows the user to specify new trace types and their configurable semantics, while, using the semantics, it automatically infers new traces based on existing traces provided by the user, and checks the consistency of traces. It has been evaluated on three industrial case studies in the automotive domain (https://modelwriter.github.io/Tarski/)

    Risk management with enhanced tracing of requirements rationale in highly distributed projects

    Full text link
    A recent survey with project managers of highly distributed projects at Siemens Program and Systems Engineering (PSE) brought up as main challenges: more severe communication hurdles compared to collocated teams and higher effort to communicate requirements in the team. In this paper, we address requirements tracing options to facilitate risk management with requirements clarification, collaboration, and knowledge management. We propose concepts for enhanced requirements tracing that include the rationale for requirements, related decisions, their history; and stakeholder value propositions. We sketch a cost-benefit model that helps the project manager to understand what tracing approach is worthwhile to address requirements risk in a project. The outcome lays the basis for planning empirical studies at PSE
    corecore