13 research outputs found

    Agent-Based Cloud Resource Management for Secure Cloud Infrastructures

    Get PDF
    The cloud offers clear benefits for computations as well as for storage for diverse application areas. Security concerns are by far the greatest barriers to the wider uptake of cloud computing, particularly for privacy-sensitive applications. The aim of this article is to propose an approach for establishing trust between users and providers of cloud infrastructures (IaaS model) based on certified trusted agents. Such approach would remove barriers that prevent security sensitive applications being moved to the cloud. The core technology encompasses a secure agent platform for providing the execution environment for agents and the secure attested software base which ensures the integrity of the host platform. In this article we describe the motivation, concept, design and initial implementation of these technologies

    SYSTEMATIC DISCOVERY OF ANDROID CUSTOMIZATION HAZARDS

    Get PDF
    The open nature of Android ecosystem has naturally laid the foundation for a highly fragmented operating system. In fact, the official AOSP versions have been aggressively customized into thousands of system images by everyone in the customization chain, such as device manufacturers, vendors, carriers, etc. If not well thought-out, the customization process could result in serious security problems. This dissertation performs a systematic investigation of Android customization’ inconsistencies with regards to security aspects at various Android layers. It brings to light new vulnerabilities, never investigated before, caused by the under-regulated and complex Android customization. It first describes a novel vulnerability Hare and proves that it is security critical and extensive affecting devices from major vendors. A new tool is proposed to detect the Hare problem and to protect affected devices. This dissertation further discovers security configuration changes through a systematic differential analysis among custom devices from different vendors and demonstrates that they could lead to severe vulnerabilities if introduced unintentionally

    Private and censorship-resistant communication over public networks

    Get PDF
    Society’s increasing reliance on digital communication networks is creating unprecedented opportunities for wholesale surveillance and censorship. This thesis investigates the use of public networks such as the Internet to build robust, private communication systems that can resist monitoring and attacks by powerful adversaries such as national governments. We sketch the design of a censorship-resistant communication system based on peer-to-peer Internet overlays in which the participants only communicate directly with people they know and trust. This ‘friend-to-friend’ approach protects the participants’ privacy, but it also presents two significant challenges. The first is that, as with any peer-to-peer overlay, the users of the system must collectively provide the resources necessary for its operation; some users might prefer to use the system without contributing resources equal to those they consume, and if many users do so, the system may not be able to survive. To address this challenge we present a new game theoretic model of the problem of encouraging cooperation between selfish actors under conditions of scarcity, and develop a strategy for the game that provides rational incentives for cooperation under a wide range of conditions. The second challenge is that the structure of a friend-to-friend overlay may reveal the users’ social relationships to an adversary monitoring the underlying network. To conceal their sensitive relationships from the adversary, the users must be able to communicate indirectly across the overlay in a way that resists monitoring and attacks by other participants. We address this second challenge by developing two new routing protocols that robustly deliver messages across networks with unknown topologies, without revealing the identities of the communication endpoints to intermediate nodes or vice versa. The protocols make use of a novel unforgeable acknowledgement mechanism that proves that a message has been delivered without identifying the source or destination of the message or the path by which it was delivered. One of the routing protocols is shown to be robust to attacks by malicious participants, while the other provides rational incentives for selfish participants to cooperate in forwarding messages
    corecore