35 research outputs found

    Expressive policy based authorization model for resource-constrained device sensors.

    Get PDF
    Los capítulos II, III y IV están sujetos a confidencialidad por el autor 92 p.Upcoming smart scenarios enabled by the Internet of Things (IoT) envision smart objects that expose services that can adapt to user behavior or be managed with the goal of achieving higher productivity, often in multistakeholder applications. In such environments, smart things are cheap sensors (and actuators) and, therefore, constrained devices. However, they are also critical components because of the importance of the provided information. Given that, strong security in general and access control in particular is a must.However, tightness, feasibility and usability of existing access control models do not cope well with the principle of least privilege; they lack both expressiveness and the ability to update the policy to be enforced in the sensors. In fact, (1) traditional access control solutions are not feasible in all constrained devices due their big impact on the performance although they provide the highest effectiveness by means of tightness and flexibility. (2) Recent access control solutions designed for constrained devices can be implemented only in not so constrained ones and lack policy expressiveness in the local authorization enforcement. (3) Access control solutions currently feasible in the most severely constrained devices have been based on authentication and very coarse grained and static policies, scale badly, and lack a feasible policy based access control solution aware of local context of sensors.Therefore, there is a need for a suitable End-to-End (E2E) access control model to provide fine grained authorization services in service oriented open scenarios, where operation and management access is by nature dynamic and that integrate massively deployed constrained but manageable sensors. Precisely, the main contribution of this thesis is the specification of such a highly expressive E2E access control model suitable for all sensors including the most severely constrained ones. Concretely, the proposed E2E access control model consists of three main foundations. (1) A hybrid architecture, which combines advantages of both centralized and distributed architectures to enable multi-step authorization. Fine granularity of the enforcement is enabled by (2) an efficient policy language and codification, which are specifically defined to gain expressiveness in the authorization policies and to ensure viability in very-constrained devices. The policy language definition enables both to make granting decisions based on local context conditions, and to react accordingly to the requests by the execution of additional tasks defined as obligations.The policy evaluation and enforcement is performed not only during the security association establishment but also afterward, while such security association is in use. Moreover, this novel model provides also control over access behavior, since iterative re-evaluation of the policy is enabled during each individual resource access.Finally, (3) the establishment of an E2E security association between two mutually authenticated peers through a security protocol named Hidra. Such Hidra protocol, based on symmetric key cryptography, relies on the hybrid three-party architecture to enable multi-step authorization as well as the instant provisioning of a dynamic security policy in the sensors. Hidra also enables delegated accounting and audit trail. Proposed access control features cope with tightness, feasibility and both dimensions of usability such as scalability and manageability, which are the key unsolved challenges in the foreseen open and dynamic scenarios enabled by IoT. Related to efficiency, the high compression factor of the proposed policy codification and the optimized Hidra security protocol relying on a symmetric cryptographic schema enable the feasibility as it is demonstrated by the validation assessment. Specifically, the security evaluation and both the analytical and experimental performance evaluation demonstrate the feasibility and adequacy of the proposed protocol and access control model.Concretely, the security validation consists of the assessment that the Hidra security protocol meets the security goals of mutual strong authentication, fine-grained authorization, confidentiality and integrity of secret data and accounting. The security analysis of Hidra conveys on the one hand, how the design aspects of the message exchange contribute to the resilience against potential attacks. On the other hand, a formal security validation supported by a software tool named AVISPA ensures the absence of flaws and the correctness of the design of Hidra.The performance validation is based on an analytical performance evaluation and a test-bed implementation of the proposed access control model for the most severely constrained devices. The key performance factor is the length of the policy instance, since it impacts proportionally on the three critical parameters such as the delay, energy consumption, memory footprint and therefore, on the feasibility.Attending to the obtained performance measures, it can be concluded that the proposed policy language keeps such balance since it enables expressive policy instances but always under limited length values. Additionally, the proposed policy codification improves notably the performance of the protocol since it results in the best policy length compression factor compared with currently existing and adopted standards.Therefore, the assessed access control model is the first approach to bring to severely constrained devices a similar expressiveness level for enforcement and accounting as in current Internet. The positive performance evaluation concludes the feasibility and suitability of this access control model, which notably rises the security features on severely constrained devices for the incoming smart scenarios.Additionally, there is no comparable impact assessment of policy expressiveness of any other access control model. That is, the presented analysis models as well as results might be a reference for further analysis and benchmarkingGaur egun darabilzkigun hainbeste gailutan mikroprozesadoreak daude txertatuta, eragiten duten prozesuan neurketak egin eta logika baten ondorioz ekiteko. Horretarako, bai sentsoreak eta baita aktuadoreak erabiltzen dira (hemendik aurrera, komunitatean onartuta dagoenez, sentsoreak esango diegu nahiz eta erabilpen biak izan). Orain arteko erabilpen zabalenetako konekzio motak, banaka edota sare lokaletan konekatuta izan dira. Era honetan, sentsoreak elkarlanean elkarreri eraginez edota zerbitzari nagusi baten agindupean, erakunde baten prozesuak ahalbideratu eta hobetzeko erabili izan dira.Internet of Things (IoT) deritzonak, sentsoreak dituzten gailuak Internet sarearen bidez konektatu eta prozesu zabalagoak eta eraginkorragoak ahalbidetzen ditu. Smartcity, Smartgrid, Smartfactory eta bestelako smart adimendun ekosistemak, gaur egun dauden eta datozen komunikaziorako teknologien aukerak baliatuz, erabilpen berriak ahalbideratu eta eragina areagotzea dute helburu.Era honetan, ekosistema hauek zabalak dira, eremu ezberdinetako erakundeek hartzen dute parte, eta berariazko sentsoreak dituzten gailuen kopurua izugarri handia da. Sentsoreak beraz, berariazkoak, merkeak eta txikiak dira, eta orain arteko lehenengo erabilpen nagusia, magnitude fisikoren bat neurtzea eta neurketa hauek zerbitzari zentralizatu batera bidaltzea izan da. Hau da, inguruan gertatzen direnak neurtu, eta zerbitzari jakin bati neurrien datuak aldiro aldiro edota atari baten baldintzapean igorri. Zerbitzariak logika aplikatu eta sistema osoa adimendun moduan jardungo du. Jokabide honetan, aurretik ezagunak diren entitateen arteko komunikazioen segurtasuna bermatzearen kexka, nahiz eta Internetetik pasatu, hein onargarri batean ebatzita dago gaur egun.Baina adimendun ekosistema aurreratuak sentsoreengandik beste jokabide bat ere aurreikusten dute. Sentsoreek eurekin harremanak izateko moduko zerbitzuak ere eskaintzen dituzte. Erakunde baten prozesuetan, beste jatorri bateko erakundeekin elkarlanean, jokabide honen erabilpen nagusiak bi dira. Batetik, prozesuan parte hartzen duen erabiltzaileak (eta jabeak izan beharrik ez duenak) inguruarekin harremanak izan litzake, eta bere ekintzetan gailuak bere berezitasunetara egokitzearen beharrizana izan litzake. Bestetik, sentsoreen jarduera eta mantenimendua zaintzen duten teknikariek, beroriek egokitzeko zerbitzuen beharrizana izan dezakete.Holako harremanak, sentsoreen eta erabiltzaileen kokalekua zehaztugabea izanik, kasu askotan Internet bidez eta zuzenak (end-to-end) izatea aurreikusten da. Hau da, sentsore txiki asko daude handik hemendik sistemaren adimena ahalbidetuz, eta harreman zuzenetarako zerbitzu ñimiñoak eskainiz. Batetik, zerbitzu zuzena, errazagoa eta eraginkorragoa dena, bestetik erronkak ere baditu. Izan ere, sentsoreak hain txikiak izanik, ezin dituzte gaur egungo protokolo eta mekanismo estandarak gauzatu. Beraz, sare mailatik eta aplikazio mailarainoko berariazko protokoloak sortzen ari dira.Tamalez, protokolo hauek arinak izatea dute helburu eta segurtasuna ez dute behar den moduan aztertu eta gauzatzen. Eta egon badaude berariazko sarbide kontrolerako ereduak baina baliabideen urritasuna dela eta, ez dira ez zorrotzak ez kudeagarriak. Are gehiago, Gartnerren arabera, erabilpen aurreratuetan inbertsioa gaur egun mugatzen duen traba Nagusia segurtasunarekiko mesfidantza da.Eta hauxe da erronka eta tesi honek landu duen gaia: batetik sentsoreak hain txikiak izanik, eta baliabideak hain urriak (10kB RAM, 100 kB Flash eta bateriak, sentsore txikienetarikoetan), eta bestetik Internet sarea hain zabala eta arriskutsua izanik, segurtasuna areagotuko duen sarbide zuzenaren kontrolerako eredu zorrotz, arin eta kudeagarri berri bat zehaztu eta bere erabilgarritasuna aztertu

    Expressive policy based authorization model for resource-constrained device sensors.

    Get PDF
    Los capítulos II, III y IV están sujetos a confidencialidad por el autor 92 p.Upcoming smart scenarios enabled by the Internet of Things (IoT) envision smart objects that expose services that can adapt to user behavior or be managed with the goal of achieving higher productivity, often in multistakeholder applications. In such environments, smart things are cheap sensors (and actuators) and, therefore, constrained devices. However, they are also critical components because of the importance of the provided information. Given that, strong security in general and access control in particular is a must.However, tightness, feasibility and usability of existing access control models do not cope well with the principle of least privilege; they lack both expressiveness and the ability to update the policy to be enforced in the sensors. In fact, (1) traditional access control solutions are not feasible in all constrained devices due their big impact on the performance although they provide the highest effectiveness by means of tightness and flexibility. (2) Recent access control solutions designed for constrained devices can be implemented only in not so constrained ones and lack policy expressiveness in the local authorization enforcement. (3) Access control solutions currently feasible in the most severely constrained devices have been based on authentication and very coarse grained and static policies, scale badly, and lack a feasible policy based access control solution aware of local context of sensors.Therefore, there is a need for a suitable End-to-End (E2E) access control model to provide fine grained authorization services in service oriented open scenarios, where operation and management access is by nature dynamic and that integrate massively deployed constrained but manageable sensors. Precisely, the main contribution of this thesis is the specification of such a highly expressive E2E access control model suitable for all sensors including the most severely constrained ones. Concretely, the proposed E2E access control model consists of three main foundations. (1) A hybrid architecture, which combines advantages of both centralized and distributed architectures to enable multi-step authorization. Fine granularity of the enforcement is enabled by (2) an efficient policy language and codification, which are specifically defined to gain expressiveness in the authorization policies and to ensure viability in very-constrained devices. The policy language definition enables both to make granting decisions based on local context conditions, and to react accordingly to the requests by the execution of additional tasks defined as obligations.The policy evaluation and enforcement is performed not only during the security association establishment but also afterward, while such security association is in use. Moreover, this novel model provides also control over access behavior, since iterative re-evaluation of the policy is enabled during each individual resource access.Finally, (3) the establishment of an E2E security association between two mutually authenticated peers through a security protocol named Hidra. Such Hidra protocol, based on symmetric key cryptography, relies on the hybrid three-party architecture to enable multi-step authorization as well as the instant provisioning of a dynamic security policy in the sensors. Hidra also enables delegated accounting and audit trail. Proposed access control features cope with tightness, feasibility and both dimensions of usability such as scalability and manageability, which are the key unsolved challenges in the foreseen open and dynamic scenarios enabled by IoT. Related to efficiency, the high compression factor of the proposed policy codification and the optimized Hidra security protocol relying on a symmetric cryptographic schema enable the feasibility as it is demonstrated by the validation assessment. Specifically, the security evaluation and both the analytical and experimental performance evaluation demonstrate the feasibility and adequacy of the proposed protocol and access control model.Concretely, the security validation consists of the assessment that the Hidra security protocol meets the security goals of mutual strong authentication, fine-grained authorization, confidentiality and integrity of secret data and accounting. The security analysis of Hidra conveys on the one hand, how the design aspects of the message exchange contribute to the resilience against potential attacks. On the other hand, a formal security validation supported by a software tool named AVISPA ensures the absence of flaws and the correctness of the design of Hidra.The performance validation is based on an analytical performance evaluation and a test-bed implementation of the proposed access control model for the most severely constrained devices. The key performance factor is the length of the policy instance, since it impacts proportionally on the three critical parameters such as the delay, energy consumption, memory footprint and therefore, on the feasibility.Attending to the obtained performance measures, it can be concluded that the proposed policy language keeps such balance since it enables expressive policy instances but always under limited length values. Additionally, the proposed policy codification improves notably the performance of the protocol since it results in the best policy length compression factor compared with currently existing and adopted standards.Therefore, the assessed access control model is the first approach to bring to severely constrained devices a similar expressiveness level for enforcement and accounting as in current Internet. The positive performance evaluation concludes the feasibility and suitability of this access control model, which notably rises the security features on severely constrained devices for the incoming smart scenarios.Additionally, there is no comparable impact assessment of policy expressiveness of any other access control model. That is, the presented analysis models as well as results might be a reference for further analysis and benchmarkingGaur egun darabilzkigun hainbeste gailutan mikroprozesadoreak daude txertatuta, eragiten duten prozesuan neurketak egin eta logika baten ondorioz ekiteko. Horretarako, bai sentsoreak eta baita aktuadoreak erabiltzen dira (hemendik aurrera, komunitatean onartuta dagoenez, sentsoreak esango diegu nahiz eta erabilpen biak izan). Orain arteko erabilpen zabalenetako konekzio motak, banaka edota sare lokaletan konekatuta izan dira. Era honetan, sentsoreak elkarlanean elkarreri eraginez edota zerbitzari nagusi baten agindupean, erakunde baten prozesuak ahalbideratu eta hobetzeko erabili izan dira.Internet of Things (IoT) deritzonak, sentsoreak dituzten gailuak Internet sarearen bidez konektatu eta prozesu zabalagoak eta eraginkorragoak ahalbidetzen ditu. Smartcity, Smartgrid, Smartfactory eta bestelako smart adimendun ekosistemak, gaur egun dauden eta datozen komunikaziorako teknologien aukerak baliatuz, erabilpen berriak ahalbideratu eta eragina areagotzea dute helburu.Era honetan, ekosistema hauek zabalak dira, eremu ezberdinetako erakundeek hartzen dute parte, eta berariazko sentsoreak dituzten gailuen kopurua izugarri handia da. Sentsoreak beraz, berariazkoak, merkeak eta txikiak dira, eta orain arteko lehenengo erabilpen nagusia, magnitude fisikoren bat neurtzea eta neurketa hauek zerbitzari zentralizatu batera bidaltzea izan da. Hau da, inguruan gertatzen direnak neurtu, eta zerbitzari jakin bati neurrien datuak aldiro aldiro edota atari baten baldintzapean igorri. Zerbitzariak logika aplikatu eta sistema osoa adimendun moduan jardungo du. Jokabide honetan, aurretik ezagunak diren entitateen arteko komunikazioen segurtasuna bermatzearen kexka, nahiz eta Internetetik pasatu, hein onargarri batean ebatzita dago gaur egun.Baina adimendun ekosistema aurreratuak sentsoreengandik beste jokabide bat ere aurreikusten dute. Sentsoreek eurekin harremanak izateko moduko zerbitzuak ere eskaintzen dituzte. Erakunde baten prozesuetan, beste jatorri bateko erakundeekin elkarlanean, jokabide honen erabilpen nagusiak bi dira. Batetik, prozesuan parte hartzen duen erabiltzaileak (eta jabeak izan beharrik ez duenak) inguruarekin harremanak izan litzake, eta bere ekintzetan gailuak bere berezitasunetara egokitzearen beharrizana izan litzake. Bestetik, sentsoreen jarduera eta mantenimendua zaintzen duten teknikariek, beroriek egokitzeko zerbitzuen beharrizana izan dezakete.Holako harremanak, sentsoreen eta erabiltzaileen kokalekua zehaztugabea izanik, kasu askotan Internet bidez eta zuzenak (end-to-end) izatea aurreikusten da. Hau da, sentsore txiki asko daude handik hemendik sistemaren adimena ahalbidetuz, eta harreman zuzenetarako zerbitzu ñimiñoak eskainiz. Batetik, zerbitzu zuzena, errazagoa eta eraginkorragoa dena, bestetik erronkak ere baditu. Izan ere, sentsoreak hain txikiak izanik, ezin dituzte gaur egungo protokolo eta mekanismo estandarak gauzatu. Beraz, sare mailatik eta aplikazio mailarainoko berariazko protokoloak sortzen ari dira.Tamalez, protokolo hauek arinak izatea dute helburu eta segurtasuna ez dute behar den moduan aztertu eta gauzatzen. Eta egon badaude berariazko sarbide kontrolerako ereduak baina baliabideen urritasuna dela eta, ez dira ez zorrotzak ez kudeagarriak. Are gehiago, Gartnerren arabera, erabilpen aurreratuetan inbertsioa gaur egun mugatzen duen traba Nagusia segurtasunarekiko mesfidantza da.Eta hauxe da erronka eta tesi honek landu duen gaia: batetik sentsoreak hain txikiak izanik, eta baliabideak hain urriak (10kB RAM, 100 kB Flash eta bateriak, sentsore txikienetarikoetan), eta bestetik Internet sarea hain zabala eta arriskutsua izanik, segurtasuna areagotuko duen sarbide zuzenaren kontrolerako eredu zorrotz, arin eta kudeagarri berri bat zehaztu eta bere erabilgarritasuna aztertu

    Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) 2019 Annual Report

    Get PDF
    Prepared for: Dr. Brian Bingham, CRUSER DirectorThe Naval Postgraduate School (NPS) Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) provides a collaborative environment and community of interest for the advancement of unmanned systems (UxS) education and research endeavors across the Navy (USN), Marine Corps (USMC) and Department of Defense (DoD). CRUSER is a Secretary of the Navy (SECNAV) initiative to build an inclusive community of interest on the application of unmanned systems (UxS) in military and naval operations. This 2019 annual report summarizes CRUSER activities in its eighth year of operations and highlights future plans.Deputy Undersecretary of the Navy PPOIOffice of Naval Research (ONR)Approved for public release; distribution is unlimited

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    The Internet of Things (IoT) has attracted much attention from society, industry and academia as a promising technology that can enhance day to day activities, and the creation of new business models, products and services, and serve as a broad source of research topics and ideas. A future digital society is envisioned, composed of numerous wireless connected sensors and devices. Driven by huge demand, the massive IoT (mIoT) or massive machine type communication (mMTC) has been identified as one of the three main communication scenarios for 5G. In addition to connectivity, computing and storage and data management are also long-standing issues for low-cost devices and sensors. The book is a collection of outstanding technical research and industrial papers covering new research results, with a wide range of features within the 5G-and-beyond framework. It provides a range of discussions of the major research challenges and achievements within this topic

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) 2019 Annual Report

    Get PDF
    Prepared for: Dr. Brian Bingham, CRUSER DirectorThe Naval Postgraduate School (NPS) Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) provides a collaborative environment and community of interest for the advancement of unmanned systems (UxS) education and research endeavors across the Navy (USN), Marine Corps (USMC) and Department of Defense (DoD). CRUSER is a Secretary of the Navy (SECNAV) initiative to build an inclusive community of interest on the application of unmanned systems (UxS) in military and naval operations. This 2019 annual report summarizes CRUSER activities in its eighth year of operations and highlights future plans.Deputy Undersecretary of the Navy PPOIOffice of Naval Research (ONR)Approved for public release; distribution is unlimited

    Performance of a space-time coded multicarrier CDMA system in frequency-selective Rayleigh channel.

    Get PDF
    Ph. D. University of KwaZulu-Natal, Durban 2014.The increasing demand for wireless services requires fast and robust broadband wireless communication for efficient utilisation of the scarce electromagnetic spectrum. One of the promising techniques for future wireless communication is the deployment of multi-input multi-output (MIMO) antenna system with orthogonal frequency division multiplexing (OFDM) coupled with multiple-access techniques. The combination of these techniques guarantees a much more reliable and robust transmission over the hostile wireless channel. This thesis investigates the performance of a multi-antenna space-time coded (STC) multi-carrier code-division multiple-access (MC-CDMA) system in a frequency-selective channel using Gold codes as spreading sequences. Spreading codes are known to be central to the performance of spread spectrum systems, STC MC-CDMA systems inclusive. Initial phase of this research work investigates multiple-access performance of spreading codes for the communication system. The performance of different sets of Gold codes for increasing number of interfering users for up to a thousand users and eight different code lengths, ranging from 31 to 4095-chip Gold codes, were considered. Simulation results show that odd-degree Gold codes give better bit-error-rate performance than even-degree Gold codes. Whereas the odd-degree codes exhibited relatively marginal loss in performance when the system was loaded, their even-degree counterparts degraded rapidly in performance, resulting in early emergence of an error floor, culminating in premature system saturation. Furthermore in this thesis, software simulations were carried to investigate the performance of a direct-sequence (DS) CDMA system in a flat-fading Rayleigh channel, and a multi-carrier (MC) CDMA system in a frequency-selective channel using different sets of Gold. The results showed that in a flat-fading channel, the Gold codes provide a constant coding gain close to that obtainable in a Gaussian channel. The results also showed that the impact of longer spreading codes was more pronounced for the MC-CDMA system in a frequency-selective channel as indicated by significant lowering of error floors. Also, frequency diversity associated with the use of longer codes coupled with multi-carrier modulation makes the MC-CDMA system resilient to multi-path effects. Further still, this thesis investigated the performance of a space-time block-coded (STBC) CDMA system in a flat-fading channel. Results showed that at low signal-to-noise ratio, the coding gain provided by the codes surpasses the diversity advantage provided by the use of the multiple antennas. The results also showed that coding gain between no-diversity link and its Gold-coded counterpart is the same as that between the transmit-diversity link and its Gold–coded counterpart. The independence of the diversity advantage provided by multiple transmit antennas and the coding gain obtainable from the use of the spreading sequences enables the prediction of the performance of composite space-time block-coded CDMA systems. Performance of a STBC OFDM system as well as a STBC MC-CDMA system in frequency-selective channel was also investigated. Results showed that the combination of diversity gain from the use of multiple antennas, coupled with coding gain provided by the Gold codes of the CDMA system, plus the diversity gain resulting from frequency diversity of multi-carrier transmission and the spectrum-spreading by the CDMA makes the composite STBC MC-CDMA system resilient to channel fading. This fact is particularly the case for long codes. For example, with reference to the OFDM transmission, the results showed that a 511-chip Gold-coded STC MC-CDMA system provided a factor of about 3,786 reduction in error floor

    Channel estimation techniques for filter bank multicarrier based transceivers for next generation of wireless networks

    Get PDF
    A dissertation submitted to Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering (Electrical and Information Engineering), August 2017The fourth generation (4G) of wireless communication system is designed based on the principles of cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) where the cyclic prefix (CP) is used to combat inter-symbol interference (ISI) and inter-carrier interference (ICI) in order to achieve higher data rates in comparison to the previous generations of wireless networks. Various filter bank multicarrier systems have been considered as potential waveforms for the fast emerging next generation (xG) of wireless networks (especially the fifth generation (5G) networks). Some examples of the considered waveforms are orthogonal frequency division multiplexing with offset quadrature amplitude modulation based filter bank, universal filtered multicarrier (UFMC), bi-orthogonal frequency division multiplexing (BFDM) and generalized frequency division multiplexing (GFDM). In perfect reconstruction (PR) or near perfect reconstruction (NPR) filter bank designs, these aforementioned FBMC waveforms adopt the use of well-designed prototype filters (which are used for designing the synthesis and analysis filter banks) so as to either replace or minimize the CP usage of the 4G networks in order to provide higher spectral efficiencies for the overall increment in data rates. The accurate designing of the FIR low-pass prototype filter in NPR filter banks results in minimal signal distortions thus, making the analysis filter bank a time-reversed version of the corresponding synthesis filter bank. However, in non-perfect reconstruction (Non-PR) the analysis filter bank is not directly a time-reversed version of the corresponding synthesis filter bank as the prototype filter impulse response for this system is formulated (in this dissertation) by the introduction of randomly generated errors. Hence, aliasing and amplitude distortions are more prominent for Non-PR. Channel estimation (CE) is used to predict the behaviour of the frequency selective channel and is usually adopted to ensure excellent reconstruction of the transmitted symbols. These techniques can be broadly classified as pilot based, semi-blind and blind channel estimation schemes. In this dissertation, two linear pilot based CE techniques namely the least square (LS) and linear minimum mean square error (LMMSE), and three adaptive channel estimation schemes namely least mean square (LMS), normalized least mean square (NLMS) and recursive least square (RLS) are presented, analyzed and documented. These are implemented while exploiting the near orthogonality properties of offset quadrature amplitude modulation (OQAM) to mitigate the effects of interference for two filter bank waveforms (i.e. OFDM/OQAM and GFDM/OQAM) for the next generation of wireless networks assuming conditions of both NPR and Non-PR in slow and fast frequency selective Rayleigh fading channel. Results obtained from the computer simulations carried out showed that the channel estimation schemes performed better in an NPR filter bank system as compared with Non-PR filter banks. The low performance of Non-PR system is due to the amplitude distortion and aliasing introduced from the random errors generated in the system that is used to design its prototype filters. It can be concluded that RLS, NLMS, LMS, LMMSE and LS channel estimation schemes offered the best normalized mean square error (NMSE) and bit error rate (BER) performances (in decreasing order) for both waveforms assuming both NPR and Non-PR filter banks. Keywords: Channel estimation, Filter bank, OFDM/OQAM, GFDM/OQAM, NPR, Non-PR, 5G, Frequency selective channel.CK201

    Evaluation of Trust in the Internet Of Things: Models, Mechanisms And Applications

    Get PDF
    In the blooming era of the Internet of Things (IoT), trust has become a vital factor for provisioning reliable smart services without human intervention by reducing risk in autonomous decision making. However, the merging of physical objects, cyber components and humans in the IoT infrastructure has introduced new concerns for the evaluation of trust. Consequently, a large number of trust-related challenges have been unsolved yet due to the ambiguity of the concept of trust and the variety of divergent trust models and management mechanisms in different IoT scenarios. In this PhD thesis, my ultimate goal is to propose an efficient and practical trust evaluation mechanisms for any two entities in the IoT. To achieve this goal, the first important objective is to augment the generic trust concept and provide a conceptual model of trust in order to come up with a comprehensive understanding of trust, influencing factors and possible Trust Indicators (TI) in the context of IoT. Following the catalyst, as the second objective, a trust model called REK comprised of the triad Reputation, Experience and Knowledge TIs is proposed which covers multi-dimensional aspects of trust by incorporating heterogeneous information from direct observation, personal experiences to global opinions. The mathematical models and evaluation mechanisms for the three TIs in the REK trust model are proposed. Knowledge TI is as “direct trust” rendering a trustor’s understanding of a trustee in respective scenarios that can be obtained based on limited available information about characteristics of the trustee, environment and the trustor’s perspective using a variety of techniques. Experience and Reputation TIs are originated from social features and extracted based on previous interactions among entities in IoT. The mathematical models and calculation mechanisms for the Experience and Reputation TIs also proposed leveraging sociological behaviours of humans in the real-world; and being inspired by the Google PageRank in the web-ranking area, respectively. The REK Trust Model is also applied in variety of IoT scenarios such as Mobile Crowd-Sensing (MCS), Car Sharing service, Data Sharing and Exchange platform in Smart Cities and in Vehicular Networks; and for empowering Blockchain-based systems. The feasibility and effectiveness of the REK model and associated evaluation mechanisms are proved not only by the theoretical analysis but also by real-world applications deployed in our ongoing TII and Wise-IoT projects
    corecore