342 research outputs found

    Prediction of multidrug-resistant TB from CT pulmonary images based on deep learning techniques

    Get PDF
    While tuberculosis (TB) disease was discovered more than a century ago, it has not been eradicated yet. Quite contrary, at present, TB constitutes one of top 10 causes of death and has shown signs of increasing. To complement conventional diagnostic procedure of applying microbiological culture that takes several weeks and remains expensive, high resolution computer tomography (CT) of pulmonary images has been resorted to not only for aiding clinicians to expedite the process of diagnosis but also for monitoring prognosis when administrating antibiotic drugs. This research undertakes the investigation of predicting multi-drug resistant (MDR) patients from drug sensitive (DS) ones based on CT lung images to monitor the effectiveness of treatment. To contend with smaller datasets (i.e. in hundreds) and the characteristics of CT TB images with limited regions capturing abnormities, patch-based deep convolutional neural network (CNN) allied to support vector machine (SVM) classifier is implemented on a collection of datasets from 230 patients obtained from ImageCLEF 2017 competition. As a result, the proposed architecture of CNN+SVM+patch performs the best with classification accuracy rate at 91.11% (79.80% in terms of patches). In addition, hand-crafted SIFT based approach accomplishes 88.88% in terms of subject and 83.56% with reference to patches, the highest in this study, which can be explained away by the fact that the datasets are in small numbers. Significantly, during the Tuberculosis Competition at ImageCLEF 2017, the authors took part in the task of classification of 5 types of TB disease and achieved top one with regard to averaged classification accuracy (i.e. ACC = 0.4067), which is also premised on the approach of CNN+SVM+patch. On the other hand, when the whole slices of 3D TB datasets are applied to train a CNN network, the best result is achieved through the application of CNN coupled with orderless pooling and SVM at 64.71% accuracy rate

    Analysis of tuberculosis severity levels from CT pulmonary images based on enhanced residual deep learning architecture

    Get PDF
    This research investigates the application of CT pulmonary images to the detection and characterisation of TB at five levels of severity, in order to monitor the efficacy of treatment. To contend with smaller datasets (i.e. in hundreds) and the characteristics of CT TB images in which abnormalities occupy only limited regions, a 3D block-based residual deep learning network (ResNet) coupled with injection of depth information (depth-Resnet) at each layer was implemented. Progress in evaluation has been accomplished in two ways. One is to assess the proposed depth-Resnet in prediction of severity scores and another is to analyse the probability of high severity of TB. For the former, delivered results are of 92.70 ± 5.97% and 67.15 ± 1.69% for proposed depth-Resnet and ResNet-50 respectively. For the latter, two additional measures are put forward, which are calculated using (1) the overall severity (1 to 5) probability, and (2) separate probabilities of both high severity (scores of 1 to 3) and low severity (scores of 4 and 5) respectively, when scores of 1 to 5 are mapped into initial probabilities of (0.9, 0.7, 0.5, 0.3, 0.2) respectively. As a result, these measures achieve the averaged accuracies of 75.88% and 85.29% for both methods respectively

    Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases

    Get PDF
    Cardiothoracic and pulmonary diseases are a significant cause of mortality and morbidity worldwide. The COVID-19 pandemic has highlighted the lack of access to clinical care, the overburdened medical system, and the potential of artificial intelligence (AI) in improving medicine. There are a variety of diseases affecting the cardiopulmonary system including lung cancers, heart disease, tuberculosis (TB), etc., in addition to COVID-19-related diseases. Screening, diagnosis, and management of cardiopulmonary diseases has become difficult owing to the limited availability of diagnostic tools and experts, particularly in resource-limited regions. Early screening, accurate diagnosis and staging of these diseases could play a crucial role in treatment and care, and potentially aid in reducing mortality. Radiographic imaging methods such as computed tomography (CT), chest X-rays (CXRs), and echo ultrasound (US) are widely used in screening and diagnosis. Research on using image-based AI and machine learning (ML) methods can help in rapid assessment, serve as surrogates for expert assessment, and reduce variability in human performance. In this Special Issue, “Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases”, we have highlighted exemplary primary research studies and literature reviews focusing on novel AI/ML methods and their application in image-based screening, diagnosis, and clinical management of cardiopulmonary diseases. We hope that these articles will help establish the advancements in AI

    An enhanced deep learning architecture for classification of Tuberculosis types from CT lung images

    Get PDF
    In this work, an enhanced ResNet deep learning network, depth-ResNet, has been developed to classify the five types of Tuberculosis (TB) lung CT images. Depth-ResNet takes 3D CT images as a whole and processes the volumatic blocks along depth directions. It builds on the ResNet-50 model to obtain 2D features on each frame and injects depth information at each process block. As a result, the averaged accuracy for classification is 71.60% for depth-ResNet and 68.59% for ResNet. The datasets are collected from the ImageCLEF 2018 competition with 1008 training data in total, where the top reported accuracy was 42.27%

    Artificial intelligence in endoscopy: the challenges and future directions

    Get PDF
    Artificial intelligence based approaches, in particular deep learning, have achieved state-of-the-art performance in medical fields with increasing number of software systems being approved by both Europe and United States. This paper reviews their applications to early detection of oesophageal cancers with a focus on their advantages and pitfalls. The paper concludes with future recommendations towards the development of a real-time, clinical implementable, interpretable and robust diagnosis support systems

    Prediction of multidrug-resistant TB from CT pulmonary images based on deep learning techniques

    Get PDF
    While tuberculosis (TB) disease was discovered more than a century ago, it has not been eradicated yet. Quite contrary, at present, TB constitutes one of top 10 causes of death and has shown signs of increasing. To complement conventional diagnostic procedure of applying microbiological culture that takes several weeks and remains expensive, high resolution computer tomography (CT) of pulmonary images has been resorted to not only for aiding clinicians to expedite the process of diagnosis but also for monitoring prognosis when administrating antibiotic drugs. This research undertakes the investigation of predicting multi-drug resistant (MDR) patients from drug sensitive (DS) ones based on CT lung images to monitor the effectiveness of treatment. To contend with smaller datasets (i.e. in hundreds) and the characteristics of CT TB images with limited regions capturing abnormities, patch-based deep convolutional neural network (CNN) allied to support vector machine (SVM) classifier is implemented on a collection of datasets from 230 patients obtained from ImageCLEF 2017 competition. As a result, the proposed architecture of CNN+SVM+patch performs the best with classification accuracy rate at 91.11% (79.80% in terms of patches). In addition, hand-crafted SIFT based approach accomplishes 88.88% in terms of subject and 83.56% with reference to patches, the highest in this study, which can be explained away by the fact that the datasets are in small numbers. Significantly, during the Tuberculosis Competition at ImageCLEF 2017, the authors took part in the task of classification of 5 types of TB disease and achieved top one with regard to averaged classification accuracy (i.e. ACC = 0.4067), which is also premised on the approach of CNN+SVM+patch. On the other hand, when the whole slices of 3D TB datasets are applied to train a CNN network, the best result is achieved through the application of CNN coupled with orderless pooling and SVM at 64.71% accuracy rate

    Computer-aided diagnosis using embedded ensemble deep learning for multiclass drug-resistant tuberculosis classification

    Get PDF
    IntroductionThis study aims to develop a web application, TB-DRD-CXR, for the categorization of tuberculosis (TB) patients into subgroups based on their level of drug resistance. The application utilizes an ensemble deep learning model that classifies TB strains into five subtypes: drug sensitive tuberculosis (DS-TB), drug resistant TB (DR-TB), multidrug-resistant TB (MDR-TB), pre-extensively drug-resistant TB (pre-XDR-TB), and extensively drug-resistant TB (XDR-TB).MethodsThe ensemble deep learning model employed in the TB-DRD-CXR web application incorporates novel fusion techniques, image segmentation, data augmentation, and various learning rate strategies. The performance of the proposed model is compared with state-of-the-art techniques and standard homogeneous CNN architectures documented in the literature.ResultsComputational results indicate that the suggested method outperforms existing methods reported in the literature, providing a 4.0%-33.9% increase in accuracy. Moreover, the proposed model demonstrates superior performance compared to standard CNN models, including DenseNet201, NASNetMobile, EfficientNetB7, EfficientNetV2B3, EfficientNetV2M, and ConvNeXtSmall, with accuracy improvements of 28.8%, 93.4%, 2.99%, 48.0%, 4.4%, and 7.6% respectively.ConclusionThe TB-DRD-CXR web application was developed and tested with 33 medical staff. The computational results showed a high accuracy rate of 96.7%, time-based efficiency (ET) of 4.16 goals/minutes, and an overall relative efficiency (ORE) of 100%. The system usability scale (SUS) score of the proposed application is 96.7%, indicating user satisfaction and a likelihood of recommending the TB-DRD-CXR application to others based on previous literature

    Atas das Oitavas Jornadas de Informática da Universidade de Évora

    Get PDF
    Atas das Oitavas Jornadas de Informática da Universidade de Évora realizadas em Março de 2018
    • …
    corecore