297 research outputs found

    Scheduling for Multi-Camera Surveillance in LTE Networks

    Full text link
    Wireless surveillance in cellular networks has become increasingly important, while commercial LTE surveillance cameras are also available nowadays. Nevertheless, most scheduling algorithms in the literature are throughput, fairness, or profit-based approaches, which are not suitable for wireless surveillance. In this paper, therefore, we explore the resource allocation problem for a multi-camera surveillance system in 3GPP Long Term Evolution (LTE) uplink (UL) networks. We minimize the number of allocated resource blocks (RBs) while guaranteeing the coverage requirement for surveillance systems in LTE UL networks. Specifically, we formulate the Camera Set Resource Allocation Problem (CSRAP) and prove that the problem is NP-Hard. We then propose an Integer Linear Programming formulation for general cases to find the optimal solution. Moreover, we present a baseline algorithm and devise an approximation algorithm to solve the problem. Simulation results based on a real surveillance map and synthetic datasets manifest that the number of allocated RBs can be effectively reduced compared to the existing approach for LTE networks.Comment: 9 pages, 10 figure

    3GPP QoS-based scheduling framework for LTE

    Get PDF
    This paper proposes the design of a scheduling framework for the downlink of the Long Term Evolution (LTE) system with the objective of meeting the Quality of Service (QoS) requirements as defined by the QoS architecture of the 3G Partnership Project (3GPP) specifications. We carry out a thorough review of 3GPP specifications analyzing the requirements of the 3GPP QoS architecture. LTE bearers may be associated with a Guaranteed Bit Rate (i.e., GBR bearers) or not (i.e., non-GBR bearers). Additionally, the specifications establish a Packet Delay Budget (PDB) to limit the maximum packet transfer delay. To achieve our goal, we design a channel-aware service discipline for GBR bearers which is able to fulfill not only the GBR but also the PDB. Additionally, we also design an algorithm for prioritizing GBR and non-GBR bearers from different QoS Class Identifiers (QCIs) following 3GPP QoS rules. We compare the proposed framework with two reference schedulers by means of network-level simulations. The results will show the ability of the proposed framework to address the QoS requirements from 3GPP specifications while providing an interesting performance from a spectral efficiency viewpoint.This work is partially supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (project TIN2013-46223-P)

    3D video transmission over LTE

    Get PDF
    This thesis presents a research work on quality of experience in 3D video transmission over LTE networks. The objective is to study the state-of-art of LTE and 3D video, described in the scientific literature, and to quantify the user quality of experience (QoE) during a simulated LTE transmission. The work will start by a study of the University of Wien “LTE-A System Simulator” and its capabilities. In addition, different scenarios with various users equipment (UEs) and base stations (eNodeBs) densities will be configured and simulated in order to obtain the frame-by-frame Block Error Rate (BLER) values experienced by different UEs. Once obtained, the Block Error Rate frames will be converted to packet level error traces, which will be used to introduce erasures and corruptions into the packetized 3D video bitstream. The corrupted encoded video stream will be decoded using an error-concealment capable video decoder and the decoded/recovered video quality (QoE) will be estimated based on the Structural Similarity Index of the recovered video. Finally, the QoE results for the different system configurations will allow classifying the severity of the QoE degradations due to transmission losses, through inferring the relationship between those system parameters and the achievable QoE.Esta dissertação apresenta um trabalho de investigação sobre a qualidade de experiência numa transmissão de vídeo 3D sobre redes LTE. O objectivo é estudar o estado-da-arte no que respeita a rede LTE e vídeo 3D, descrito na literatura científica, e obter a qualidade de experiência de usuário (QoE) durante uma simulação de transmissão LTE. O trabalho começará por um estudo do University of Wien “LTE-A System Simulator” e as suas capacidades. Para este efeito, vão ser configurados diferentes cenários com distintas densidades de utilizadores (UEs) e estações base (eNodeBs), com o fim de obter a taxa de erros do bloco (BLER) experimentada por diferentes utilizadores. Depois de obter esta taxa, as tramas da taxa de erros do bloco (BLER) serão convertidas em tramas de nível de erro de pacotes, que vão ser usadas para adicionar corrupções de bit em ficheiros de vídeo 3D. O fluxo de vídeo codificado e corrompido será descodificado usando um descodificador de vídeo e a qualidade do vídeo recuperado vai ser calculada com base no Índice de Similitude Estrutural. Finalmente, os resultados de QoE para as diferentes configurações do sistema permitirão classificar o nível das degradações de QoE devido a perdas de transmissão, por meio de inferir a relação entre os parâmetros do sistema e a QoE obtida.Ingeniería de Telecomunicació
    corecore