1,046 research outputs found

    Vademecum-based GFEM (V-GFEM): optimal enrichment for transient problems

    Get PDF
    This is the accepted version of the following article: [Canales, D., Leygue, A., Chinesta, F., González, D., Cueto, E., Feulvarch, E., Bergheau, J. -M., and Huerta, A. (2016) Vademecum-based GFEM (V-GFEM): optimal enrichment for transient problems. Int. J. Numer. Meth. Engng, 108: 971–989. doi: 10.1002/nme.5240.], which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/nme.5240/fullThis paper proposes a generalized finite element method based on the use of parametric solutions as enrichment functions. These parametric solutions are precomputed off-line and stored in memory in the form of a computational vademecum so that they can be used on-line with negligible cost. This renders a more efficient computational method than traditional finite element methods at performing simulations of processes. One key issue of the proposed method is the efficient computation of the parametric enrichments. These are computed and efficiently stored in memory by employing proper generalized decompositions. Although the presented method can be broadly applied, it is particularly well suited in manufacturing processes involving localized physics that depend on many parameters, such as welding. After introducing the vademecum-generalized finite element method formulation, we present some numerical examples related to the simulation of thermal models encountered in welding processes.Peer ReviewedPostprint (author's final draft

    Design for Additive Manufacturing of Conformal Cooling Channels Using Thermal-Fluid Topology Optimization and Application in Injection Molds

    Get PDF
    Additive manufacturing allows the fabrication parts and tools of high complexity. This capability challenges traditional guidelines in the design of conformal cooling systems in heat exchangers, injection molds, and other parts and tools. Innovative design methods, such as network-based approaches, lattice structures, and structural topology optimization have been used to generate complex and highly efficient cooling systems; however, methods that incorporate coupled thermal and fluid analysis remain scarce. This paper introduces a coupled thermal-fluid topology optimization algorithm for the design of conformal cooling channels. With this method, the channel position problem is replaced to a material distribution problem. The material distribution directly depends on the effect of flow resistance, heat conduction, as well as forced and natural convection. The problem is formulated based on a coupling of Navier-Stokes equations and convection-diffusion equation. The problem is solved by gradient-based optimization after analytical sensitivity derived using the adjoint method. The algorithm leads a two -dimensional conceptual design having optimal heat transfer and balanced flow. The conceptual design is converted to three-dimensional channels and mapped to a morphological surface conformal to the injected part. The method is applied to design an optimal conformal cooling for a real three dimensional injection mold. The feasibility of the final designs is verified through simulations. The final designs can be exported as both three-dimensional graphic and surface mesh CAD format, bringing the manufacture department the convenience to run the tool path for final fitting

    International Workshop on Finite Elements for Microwave Engineering

    Get PDF
    When Courant prepared the text of his 1942 address to the American Mathematical Society for publication, he added a two-page Appendix to illustrate how the variational methods first described by Lord Rayleigh could be put to wider use in potential theory. Choosing piecewise-linear approximants on a set of triangles which he called elements, he dashed off a couple of two-dimensional examples and the finite element method was born. … Finite element activity in electrical engineering began in earnest about 1968-1969. A paper on waveguide analysis was published in Alta Frequenza in early 1969, giving the details of a finite element formulation of the classical hollow waveguide problem. It was followed by a rapid succession of papers on magnetic fields in saturable materials, dielectric loaded waveguides, and other well-known boundary value problems of electromagnetics. … In the decade of the eighties, finite element methods spread quickly. In several technical areas, they assumed a dominant role in field problems. P.P. Silvester, San Miniato (PI), Italy, 1992 Early in the nineties the International Workshop on Finite Elements for Microwave Engineering started. This volume contains the history of the Workshop and the Proceedings of the 13th edition, Florence (Italy), 2016 . The 14th Workshop will be in Cartagena (Colombia), 2018
    • …
    corecore