89 research outputs found

    Multi-Scale Hierarchical Conditional Random Field for Railway Electrification Scene Classification Using Mobile Laser Scanning Data

    Get PDF
    With the recent rapid development of high-speed railway in many countries, precise inspection for railway electrification systems has become more significant to ensure safe railway operation. However, this time-consuming manual inspection is not satisfactory for the high-demanding inspection task, thus a safe, fast and automatic inspection method is required. With LiDAR (Light Detection and Ranging) data becoming more available, the accurate railway electrification scene understanding using LiDAR data becomes feasible towards automatic 3D precise inspection. This thesis presents a supervised learning method to classify railway electrification objects from Mobile Laser Scanning (MLS) data. First, a multi-range Conditional Random Field (CRF), which characterizes not only labeling homogeneity at a short range, but also the layout compatibility between different objects at a middle range in the probabilistic graphical model is implemented and tested. Then, this multi-range CRF model will be extended and improved into a hierarchical CRF model to consider multi-scale layout compatibility at full range. The proposed method is evaluated on a dataset collected in Korea with complex railway electrification systems environment. The experiment shows the effectiveness of proposed model

    DETECTION OF BUILDING ROOFS AND FACADES FROM AERIAL LASER SCANNING DATA USING DEEP LEARNING

    Get PDF
    In this work we test the power of prediction of deep learning for detection of buildings from aerial laser scanner point cloud information. Automatic extraction of built features from remote sensing data is of extreme interest for many applications. In particular latest paradigms of 3D mapping of buildings, such as CityGML and BIM, can benefit from an initial determination of building geometries. In this work we used a LiDAR dataset of urban environment from the ISPRS benchmark on urban object detection. The dataset is labelled with eight classes, two were used for this investigation: roof and facades. The objective is to test how TensorFlow neural network for deep learning can predict these two classes. Results show that for “roof” and “facades” semantic classes respectively, recall is 84% and 76% and precision is 72% and 63%. The number and distribution of correct points well represent the geometry, thus allowing to use them as support for CityGML and BIM modelling. Further tuning of the hidden layers of the DL model will likely improve results and will be tested in future investigations

    DETECTION OF BUILDING ROOFS AND FACADES FROM AERIAL LASER SCANNING DATA USING DEEP LEARNING

    Get PDF
    In this work we test the power of prediction of deep learning for detection of buildings from aerial laser scanner point cloud information. Automatic extraction of built features from remote sensing data is of extreme interest for many applications. In particular latest paradigms of 3D mapping of buildings, such as CityGML and BIM, can benefit from an initial determination of building geometries. In this work we used a LiDAR dataset of urban environment from the ISPRS benchmark on urban object detection. The dataset is labelled with eight classes, two were used for this investigation: roof and facades. The objective is to test how TensorFlow neural network for deep learning can predict these two classes. Results show that for “roof” and “facades” semantic classes respectively, recall is 84% and 76% and precision is 72% and 63%. The number and distribution of correct points well represent the geometry, thus allowing to use them as support for CityGML and BIM modelling. Further tuning of the hidden layers of the DL model will likely improve results and will be tested in future investigations

    Semantic Labeling of Mobile LiDAR Point Clouds via Active Learning and Higher Order MRF

    Get PDF
    【Abstract】Using mobile Light Detection and Ranging point clouds to accomplish road scene labeling tasks shows promise for a variety of applications. Most existing methods for semantic labeling of point clouds require a huge number of fully supervised point cloud scenes, where each point needs to be manually annotated with a specific category. Manually annotating each point in point cloud scenes is labor intensive and hinders practical usage of those methods. To alleviate such a huge burden of manual annotation, in this paper, we introduce an active learning method that avoids annotating the whole point cloud scenes by iteratively annotating a small portion of unlabeled supervoxels and creating a minimal manually annotated training set. In order to avoid the biased sampling existing in traditional active learning methods, a neighbor-consistency prior is exploited to select the potentially misclassified samples into the training set to improve the accuracy of the statistical model. Furthermore, lots of methods only consider short-range contextual information to conduct semantic labeling tasks, but ignore the long-range contexts among local variables. In this paper, we use a higher order Markov random field model to take into account more contexts for refining the labeling results, despite of lacking fully supervised scenes. Evaluations on three data sets show that our proposed framework achieves a high accuracy in labeling point clouds although only a small portion of labels is provided. Moreover, comparative experiments demonstrate that our proposed framework is superior to traditional sampling methods and exhibits comparable performance to those fully supervised models.10.13039/501100001809-National Natural Science Foundation of China; Collaborative Innovation Center of Haixi Government Affairs Big Data Sharin

    Contextual classification of point cloud data by exploiting individual 3d neigbourhoods

    Get PDF
    The fully automated analysis of 3D point clouds is of great importance in photogrammetry, remote sensing and computer vision. For reliably extracting objects such as buildings, road inventory or vegetation, many approaches rely on the results of a point cloud classification, where each 3D point is assigned a respective semantic class label. Such an assignment, in turn, typically involves statistical methods for feature extraction and machine learning. Whereas the different components in the processing workflow have extensively, but separately been investigated in recent years, the respective connection by sharing the results of crucial tasks across all components has not yet been addressed. This connection not only encapsulates the interrelated issues of neighborhood selection and feature extraction, but also the issue of how to involve spatial context in the classification step. In this paper, we present a novel and generic approach for 3D scene analysis which relies on (i) individually optimized 3D neighborhoods for (ii) the extraction of distinctive geometric features and (iii) the contextual classification of point cloud data. For a labeled benchmark dataset, we demonstrate the beneficial impact of involving contextual information in the classification process and that using individual 3D neighborhoods of optimal size significantly increases the quality of the results for both pointwise and contextual classification

    CONTEXTUAL CLASSIFICATION OF POINT CLOUD DATA BY EXPLOITING INDIVIDUAL 3D NEIGBOURHOODS

    Get PDF
    • 

    corecore