1,060 research outputs found

    Frontiers of Adaptive Design, Synthetic Biology and Growing Skins for Ephemeral Hybrid Structures

    Get PDF
    The history of membranes is one of adaptation, from the development in living organisms to man-made versions, with a great variety of uses in temporary design: clothing, building, packaging, etc. Being versatile and simple to integrate, membranes have a strong sustainability potential, through an essential use of material resources and multifunctional design, representing one of the purest cases where “design follows function.” The introduction of new engineered materials and techniques, combined with a growing interest for Nature-inspired technologies are progressively merging man-made artifacts and biological processes with a high potential for innovation. This chapter introduces, through a number of examples, the broad variety of hybrid membranes in the contest of experimental Design, Art and Architecture, categorized following two different stages of biology-inspired approach with the aim of identifying potential developments. Biomimicry, is founded on the adoption of practices from nature in architecture though imitation: solutions are observed on a morphological, structural or procedural level and copied to design everything from nanoscale materials to building technologies. Synthetic biology relies on hybrid procedures mixing natural and synthetic materials and processes

    The robot's vista space : a computational 3D scene analysis

    Get PDF
    Swadzba A. The robot's vista space : a computational 3D scene analysis. Bielefeld (Germany): Bielefeld University; 2011.The space that can be explored quickly from a fixed view point without locomotion is known as the vista space. In indoor environments single rooms and room parts follow this definition. The vista space plays an important role in situations with agent-agent interaction as it is the directly surrounding environment in which the interaction takes place. A collaborative interaction of the partners in and with the environment requires that both partners know where they are, what spatial structures they are talking about, and what scene elements they are going to manipulate. This thesis focuses on the analysis of a robot's vista space. Mechanisms for extracting relevant spatial information are developed which enable the robot to recognize in which place it is, to detect the scene elements the human partner is talking about, and to segment scene structures the human is changing. These abilities are addressed by the proposed holistic, aligned, and articulated modeling approach. For a smooth human-robot interaction, the computed models should be aligned to the partner's representations. Therefore, the design of the computational models is based on the combination of psychological results from studies on human scene perception with basic physical properties of the perceived scene and the perception itself. The holistic modeling realizes a categorization of room percepts based on the observed 3D spatial layout. Room layouts have room type specific features and fMRI studies have shown that some of the human brain areas being active in scene recognition are sensitive to the 3D geometry of a room. With the aligned modeling, the robot is able to extract the hierarchical scene representation underlying a scene description given by a human tutor. Furthermore, it is able to ground the inferred scene elements in its own visual perception of the scene. This modeling follows the assumption that cognition and language schematize the world in the same way. This is visible in the fact that a scene depiction mainly consists of relations between an object and its supporting structure or between objects located on the same supporting structure. Last, the articulated modeling equips the robot with a methodology for articulated scene part extraction and fast background learning under short and disturbed observation conditions typical for human-robot interaction scenarios. Articulated scene parts are detected model-less by observing scene changes caused by their manipulation. Change detection and background learning are closely coupled because change is defined phenomenologically as variation of structure. This means that change detection involves a comparison of currently visible structures with a representation in memory. In range sensing this comparison can be nicely implement as subtraction of these two representations. The three modeling approaches enable the robot to enrich its visual perceptions of the surrounding environment, the vista space, with semantic information about meaningful spatial structures useful for further interaction with the environment and the human partner

    CHALLENGES IN FLYING QUADROTOR UNMANNED AERIAL VEHICLE FOR 3D INDOOR RECONSTRUCTION

    Get PDF
    Three-dimensional modelling plays a vital role in indoor 3D tracking, navigation, guidance and emergency evacuation. Reconstruction of indoor 3D models is still problematic, in part, because indoor spaces provide challenges less-documented than their outdoor counterparts. Challenges include obstacles curtailing image and point cloud capture, restricted accessibility and a wide array of indoor objects, each with unique semantics. Reconstruction of indoor environments can be achieved through a photogrammetric approach, e.g. by using image frames, aligned using recurring corresponding image points (CIP) to build coloured point clouds. Our experiments were conducted by flying a QUAV in three indoor environments and later reconstructing 3D models which were analysed under different conditions. Point clouds and meshes were created using Agisoft PhotoScan Professional. We concentrated on flight paths from two vantage points: 1) safety and security while flying indoors and 2) data collection needed for reconstruction of 3D models. We surmised that the main challenges in providing safe flight paths are related to the physical configuration of indoor environments, privacy issues, the presence of people and light conditions. We observed that the quality of recorded video used for 3D reconstruction has a high dependency on surface materials, wall textures and object types being reconstructed. Our results show that 3D indoor reconstruction predicated on video capture using a QUAV is indeed feasible, but close attention should be paid to flight paths and conditions ultimately influencing the quality of 3D models. Moreover, it should be decided in advance which objects need to be reconstructed, e.g. bare rooms or detailed furniture

    Frontiers of Adaptive Design, Synthetic Biology and Growing Skins for Ephemeral Hybrid Structures

    Get PDF
    The history of membranes is one of adaptation, from the development in living organisms to man-made versions, with a great variety of uses in temporary design: clothing, building, packaging, etc. Being versatile and simple to integrate, membranes have a strong sustainability potential, through an essential use of material resources and multifunctional design, representing one of the purest cases where “design follows function.” The introduction of new engineered materials and techniques, combined with a growing interest for Nature-inspired technologies are progressively merging man-made artifacts and biological processes with a high potential for innovation. This chapter introduces, through a number of examples, the broad variety of hybrid membranes in the contest of experimental Design, Art and Architecture, categorized following two different stages of biology-inspired approach with the aim of identifying potential developments. Biomimicry, is founded on the adoption of practices from nature in architecture though imitation: solutions are observed on a morphological, structural or procedural level and copied to design everything from nanoscale materials to building technologies. Synthetic biology relies on hybrid procedures mixing natural and synthetic materials and processes

    Shaking Heritage

    Get PDF
    Any moment the earth can shake, but we do not know when or where. If it happens, our Heritage might be in danger. Shaking Heritage addresses the topic of the seismic vulnerability of museum collections. It develops a way to assess the seismic risks for movable Heritage, proposing a synthetic method to rate the vulnerable settings. It discusses the necessity of integrating museography and anti-seismic solutions for museums and exhibitions, and studies exhibit solutions that would improve the seismic safety of collections and setups. It stresses the necessity of constructing shared guidelines and policies for the safety of the movable Heritage. Shaking Heritage is a step forward in acknowledging the importance of the anti-seismic culture among museum institutions and researchers

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    CityGML in the Integration of BIM and the GIS: Challenges and Opportunities

    Get PDF
    CityGML (City Geography Markup Language) is the most investigated standard in the integration of building information modeling (BIM) and the geographic information system (GIS), and it is essential for digital twin and smart city applications. The new CityGML 3.0 has been released for a while, but it is still not clear whether its new features bring new challenges or opportunities to this research topic. Therefore, the aim of this study is to understand the state of the art of CityGML in BIM/GIS integration and to investigate the potential influence of CityGML3.0 on BIM/GIS integration. To achieve this aim, this study used a systematic literature review approach. In total, 136 papers from Web of Science (WoS) and Scopus were collected, reviewed, and analyzed. The main findings of this review are as follows: (1) There are several challenging problems in the IFC-to-CityGML conversion, including LoD (Level of Detail) mapping, solid-to-surface conversion, and semantic mapping. (2) The ‘space’ concept and the new LoD concept in CityGML 3.0 can bring new opportunities to LoD mapping and solid-to-surface conversion. (3) The Versioning module and the Dynamizer module can add dynamic semantics to the CityGML. (4) Graph techniques and scan-to-BIM offer new perspectives for facilitating the use of CityG

    CHALLENGES IN FLYING QUADROTOR UNMANNED AERIAL VEHICLE FOR 3D INDOOR RECONSTRUCTION

    Get PDF

    KINE[SIS]TEM'17 From Nature to Architectural Matter

    Get PDF
    Kine[SiS]tem – From Kinesis + System. Kinesis is a non-linear movement or activity of an organism in response to a stimulus. A system is a set of interacting and interdependent agents forming a complex whole, delineated by its spatial and temporal boundaries, influenced by its environment. How can architectural systems moderate the external environment to enhance comfort conditions in a simple, sustainable and smart way? This is the starting question for the Kine[SiS]tem’17 – From Nature to Architectural Matter International Conference. For decades, architectural design was developed despite (and not with) the climate, based on mechanical heating and cooling. Today, the argument for net zero energy buildings needs very effective strategies to reduce energy requirements. The challenge ahead requires design processes that are built upon consolidated knowledge, make use of advanced technologies and are inspired by nature. These design processes should lead to responsive smart systems that deliver the best performance in each specific design scenario. To control solar radiation is one key factor in low-energy thermal comfort. Computational-controlled sensor-based kinetic surfaces are one of the possible answers to control solar energy in an effective way, within the scope of contradictory objectives throughout the year.FC

    RECONSTRUCTIVE 3D MODELLING AND INTERACTIVE VISUALIZATION FOR ACCESSIBILITY OF PIFFETTI’S LIBRARY IN THE VILLA DELLA REGINA MUSEUM (TURIN)

    Get PDF
    This research is realised in the framework of a project recently funded as part of the PNRR (National Recovery and Resilience Plan) in the Accessibility sector. The working team has been established in the framework of the scientific agreement between the Museum of Villa della Regina in Turin, the Department of Architecture and Design at Politecnico di Torino, and the Department of History, Drawing and Restoration of Architecture at Sapienza Università di Roma, and includes knowledge from art history, digital surveying, 3D modelling, and digital solutions for cultural heritage. The research involves the reconstructive 3D modelling of Piffetti’s Library, once placed in the cabinet toward midnight and west inside the Villa della Regina and today in the Palazzo del Quirinale, and its interactive visualisation through augmented reality (AR) and virtual reality (VR) aimed at accessibility
    corecore