726 research outputs found

    Highly-Optimized Radar-Based Gesture Recognition System with Depthwise Expansion Module

    Get PDF
    The increasing integration of technology in our daily lives demands the development of more convenient human–computer interaction (HCI) methods. Most of the current hand-based HCI strategies exhibit various limitations, e.g., sensibility to variable lighting conditions and limitations on the operating environment. Further, the deployment of such systems is often not performed in resource-constrained contexts. Inspired by the MobileNetV1 deep learning network, this paper presents a novel hand gesture recognition system based on frequency-modulated continuous wave (FMCW) radar, exhibiting a higher recognition accuracy in comparison to the state-of-the-art systems. First of all, the paper introduces a method to simplify radar preprocessing while preserving the main information of the performed gestures. Then, a deep neural classifier with the novel Depthwise Expansion Module based on the depthwise separable convolutions is presented. The introduced classifier is optimized and deployed on the Coral Edge TPU board. The system defines and adopts eight different hand gestures performed by five users, offering a classification accuracy of 98.13% while operating in a low-power and resource-constrained environment.Electronic Components and Systems for European Leadership Joint Undertaking under grant agreement No. 826655 (Tempo).European Union’s Horizon 2020 research and innovation programme and Belgium, France, Germany, Switzerland, and the NetherlandsLodz University of Technology

    An original framework for understanding human actions and body language by using deep neural networks

    Get PDF
    The evolution of both fields of Computer Vision (CV) and Artificial Neural Networks (ANNs) has allowed the development of efficient automatic systems for the analysis of people's behaviour. By studying hand movements it is possible to recognize gestures, often used by people to communicate information in a non-verbal way. These gestures can also be used to control or interact with devices without physically touching them. In particular, sign language and semaphoric hand gestures are the two foremost areas of interest due to their importance in Human-Human Communication (HHC) and Human-Computer Interaction (HCI), respectively. While the processing of body movements play a key role in the action recognition and affective computing fields. The former is essential to understand how people act in an environment, while the latter tries to interpret people's emotions based on their poses and movements; both are essential tasks in many computer vision applications, including event recognition, and video surveillance. In this Ph.D. thesis, an original framework for understanding Actions and body language is presented. The framework is composed of three main modules: in the first one, a Long Short Term Memory Recurrent Neural Networks (LSTM-RNNs) based method for the Recognition of Sign Language and Semaphoric Hand Gestures is proposed; the second module presents a solution based on 2D skeleton and two-branch stacked LSTM-RNNs for action recognition in video sequences; finally, in the last module, a solution for basic non-acted emotion recognition by using 3D skeleton and Deep Neural Networks (DNNs) is provided. The performances of RNN-LSTMs are explored in depth, due to their ability to model the long term contextual information of temporal sequences, making them suitable for analysing body movements. All the modules were tested by using challenging datasets, well known in the state of the art, showing remarkable results compared to the current literature methods

    Multikernel convolutional neural network for sEMG based hand gesture classification

    Get PDF
    openIl riconoscimento dei gesti della mano è un argomento ampiamente discusso in letteratura, dove vengono analizzate diverse tecniche sia in termini di tipi di segnale in ingresso che di algoritmi. Tra i più utilizzati ci sono i segnali elettromiografici (sEMG), già ampiamente sfruttati nelle applicazioni di interazione uomo-macchina (HMI). Determinare come decodificare le informazioni contenute nei segnali EMG in modo robusto e accurato è un problema chiave per il quale è urgente trovare una soluzione. Recentemente, molti incarichi di riconoscimento dei pattern EMG sono stati affrontati utilizzando metodi di deep learning. Nonostante le elevate prestazioni di questi ultimi, le loro capacità di generalizzazione sono spesso limitate dall'elevata eterogeneità tra i soggetti, l'impedenza cutanea, il posizionamento dei sensori, ecc. Inoltre, poiché questo progetto è focalizzato sull'applicazione in tempo reale di protesi, ci sono maggiori vincoli sui tempi di risposta del sistema che riducono la complessità dei modelli. In questa tesi è stata testata una rete neurale convoluzionale multi-kernel su diversi dataset pubblici per verificare la sua generalizzabilità. Inoltre, è stata analizzata la capacità del modello di superare i limiti inter-soggetto e inter-sessione in giorni diversi, preservando i vincoli legati a un sistema embedded. I risultati confermano le difficoltà incontrate nell'estrazione di informazioni dai segnali emg; tuttavia, dimostrano la possibilità di ottenere buone prestazioni per un uso robusto di mani prostetiche. Inoltre, è possibile ottenere prestazioni migliori personalizzando il modello con tecniche di transfer learning e di adattamento al dominio.Hand gesture recognition is a widely discussed topic in the literature, where different techniques are analyzed in terms of both input signal types and algorithms. Among the most widely used are electromyographic signals (sEMG), which are already widely exploited in human-computer interaction (HMI) applications. Determining how to decode the information contained in EMG signals robustly and accurately is a key problem for which a solution is urgently needed. Recently, many EMG pattern recognition tasks have been addressed using deep learning methods. Despite their high performance, their generalization capabilities are often limited by high heterogeneity among subjects, skin impedance, sensor placement, etc. In addition, because this project is focused on the real-time application of prostheses, there are greater constraints on the system response times that reduce the complexity of the models. In this thesis, a multi-kernel convolutional neural network was tested on several public datasets to verify its generalizability. In addition, the model's ability to overcome inter-subject and inter-session constraints on different days while preserving the constraints associated with an embedded system was analyzed. The results confirm the difficulties encountered in extracting information from emg signals; however, they demonstrate the possibility of achieving good performance for robust use of prosthetic hands. In addition, better performance can be achieved by customizing the model with transfer learning and domain-adaptationtechniques

    Deep Learning-Based Action Recognition

    Get PDF
    The classification of human action or behavior patterns is very important for analyzing situations in the field and maintaining social safety. This book focuses on recent research findings on recognizing human action patterns. Technology for the recognition of human action pattern includes the processing technology of human behavior data for learning, technology of expressing feature values ​​of images, technology of extracting spatiotemporal information of images, technology of recognizing human posture, and technology of gesture recognition. Research on these technologies has recently been conducted using general deep learning network modeling of artificial intelligence technology, and excellent research results have been included in this edition
    • …
    corecore