881 research outputs found

    Ring diagram analysis of near-surface flows in the Sun

    Get PDF
    Ring diagram analysis of solar oscillation power spectra obtained from MDI data is carried out to study the velocity fields in the outer part of the solar convection zone. The three dimensional power spectra are fitted to a model which has a Lorentzian profile in frequency and which includes the advection of the wave front by horizontal flows, to obtain the two components of the sub-surface flows as a function of the horizontal wave number and radial order of the oscillation modes. This information is then inverted using OLA and RLS methods to infer the variation in horizontal flow velocity with depth. The average rotation velocity at different latitudes obtained by this technique agrees reasonably with helioseismic estimates made using frequency splitting data. The shear layer just below the solar surface appears to consist of two parts with the outer part up to a depth of 4 Mm, where the velocity gradient does not show any reversal up to a latitude of 60 degrees. In the deeper part the velocity gradient shows reversal in sign around a latitude of 55 degrees. The zonal flow velocities inferred in the outermost layers appears to be similar to those obtained by other measurements. A meridional flow from equator polewards is found. It has a maximum amplitude of about 30 m/s near the surface and the amplitude is nearly constant in the outer shear layer.Comment: aastex, 12 figures, to appear in Ap.

    Hermite regularization of the Lattice Boltzmann Method for open source computational aeroacoustics

    Full text link
    The lattice Boltzmann method (LBM) is emerging as a powerful engineering tool for aeroacoustic computations. However, the LBM has been shown to present accuracy and stability issues in the medium-low Mach number range, that is of interest for aeroacoustic applications. Several solutions have been proposed but often are too computationally expensive, do not retain the simplicity and the advantages typical of the LBM, or are not described well enough to be usable by the community due to proprietary software policies. We propose to use an original regularized collision operator, based on the expansion in Hermite polynomials, that greatly improves the accuracy and stability of the LBM without altering significantly its algorithm. The regularized LBM can be easily coupled with both non-reflective boundary conditions and a multi-level grid strategy, essential ingredients for aeroacoustic simulations. Excellent agreement was found between our approach and both experimental and numerical data on two different benchmarks: the laminar, unsteady flow past a 2D cylinder and the 3D turbulent jet. Finally, most of the aeroacoustic computations with LBM have been done with commercial softwares, while here the entire theoretical framework is implemented on top of an open source library (Palabos).Comment: 34 pages, 12 figures, The Journal of the Acoustical Society of America (in press

    Testing Helioseismic-Holography Inversions for Supergranular Flows Using Synthetic Data

    Get PDF
    Supergranulation is one of the most visible length scales of solar convection and has been studied extensively by local helioseismology. We use synthetic data computed with the Seismic Propagation through Active Regions and Convection (SPARC) code to test regularized-least squares (RLS) inversions of helioseismic holography measurements for a supergranulation-like flow. The code simulates the acoustic wavefield by solving the linearized three-dimensional Euler equations in Cartesian geometry. We model a single supergranulation cell with a simple, axisymmetric, mass-conserving flow. The use of simulated data provides an opportunity for direct evaluation of the accuracy of measurement and inversion techniques. The RLS technique applied to helioseismic-holography measurements is generally successful in reproducing the structure of the horizontal flow field of the model supergranule cell. The errors are significant in horizontal-flow inversions near the top and bottom of the computational domain as well as in vertical-flow inversions throughout the domain. We show that the errors in the vertical velocity are due largely to cross talk from the horizontal velocity.Comment: 22 pages, 12 figues, accepted for publication in Solar Physic

    Impact of thixotropy on flow patterns induced in a stirred tank : numerical and experimental studies

    Get PDF
    Agitation of a thixotropic shear-thinning fluid exhibiting a yield stress is investigated both experimentally and via simulations. Steady-state experiments are conducted at three impeller rotation rates (1, 2 and 8 s−1) for a tank stirred with an axial-impeller and flow-field measurements are made using particle image velocimetry (PIV) measurements. Threedimensional numerical simulations are also performed using the commercial CFD code ANSYS CFX10.0. The viscosity of the suspension is determined experimentally and is modelled using two shear-dependant laws, one of which takes into account the flow instabilities of such fluids at low shear rates. At the highest impeller speed, the flow exhibits the familiar outward pumping action associated with axial-flow impellers. However, as the impeller speed decreases, a cavern is formed around the impeller, the flow generated in the vicinity of the agitator reorganizes and its pumping capacity vanishes. An unusual flow pattern, where the radial velocity dominates, is observed experimentally at the lowest stirring speed. It is found to result from wall slip effects. Using blades with rough surfaces prevents this peculiar behaviour and mainly resolves the discrepancies between the experimental and computational results
    corecore