1,606 research outputs found

    Medical image computing and computer-aided medical interventions applied to soft tissues. Work in progress in urology

    Full text link
    Until recently, Computer-Aided Medical Interventions (CAMI) and Medical Robotics have focused on rigid and non deformable anatomical structures. Nowadays, special attention is paid to soft tissues, raising complex issues due to their mobility and deformation. Mini-invasive digestive surgery was probably one of the first fields where soft tissues were handled through the development of simulators, tracking of anatomical structures and specific assistance robots. However, other clinical domains, for instance urology, are concerned. Indeed, laparoscopic surgery, new tumour destruction techniques (e.g. HIFU, radiofrequency, or cryoablation), increasingly early detection of cancer, and use of interventional and diagnostic imaging modalities, recently opened new challenges to the urologist and scientists involved in CAMI. This resulted in the last five years in a very significant increase of research and developments of computer-aided urology systems. In this paper, we propose a description of the main problems related to computer-aided diagnostic and therapy of soft tissues and give a survey of the different types of assistance offered to the urologist: robotization, image fusion, surgical navigation. Both research projects and operational industrial systems are discussed

    3D fusion of histology to multi-parametric MRI for prostate cancer imaging evaluation and lesion-targeted treatment planning

    Get PDF
    Multi-parametric magnetic resonance imaging (mpMRI) of localized prostate cancer has the potential to support detection, staging and localization of tumors, as well as selection, delivery and monitoring of treatments. Delineating prostate cancer tumors on imaging could potentially further support the clinical workflow by enabling precise monitoring of tumor burden in active-surveillance patients, optimized targeting of image-guided biopsies, and targeted delivery of treatments to decrease morbidity and improve outcomes. Evaluating the performance of mpMRI for prostate cancer imaging and delineation ideally includes comparison to an accurately registered reference standard, such as prostatectomy histology, for the locations of tumor boundaries on mpMRI. There are key gaps in knowledge regarding how to accurately register histological reference standards to imaging, and consequently further gaps in knowledge regarding the suitability of mpMRI for tasks, such as tumor delineation, that require such reference standards for evaluation. To obtain an understanding of the magnitude of the mpMRI-histology registration problem, we quantified the position, orientation and deformation of whole-mount histology sections relative to the formalin-fixed tissue slices from which they were cut. We found that (1) modeling isotropic scaling accounted for the majority of the deformation with a further small but statistically significant improvement from modeling affine transformation, and (2) due to the depth (mean±standard deviation (SD) 1.1±0.4 mm) and orientation (mean±SD 1.5±0.9°) of the sectioning, the assumption that histology sections are cut from the front faces of tissue slices, common in previous approaches, introduced a mean error of 0.7 mm. To determine the potential consequences of seemingly small registration errors such as described above, we investigated the impact of registration accuracy on the statistical power of imaging validation studies using a co-registered spatial reference standard (e.g. histology images) by deriving novel statistical power formulae that incorporate registration error. We illustrated, through a case study modeled on a prostate cancer imaging trial at our centre, that submillimeter differences in registration error can have a substantial impact on the required sample sizes (and therefore also the study cost) for studies aiming to detect mpMRI signal differences due to 0.5 – 2.0 cm3 prostate tumors. With the aim of achieving highly accurate mpMRI-histology registrations without disrupting the clinical pathology workflow, we developed a three-stage method for accurately registering 2D whole-mount histology images to pre-prostatectomy mpMRI that allowed flexible placement of cuts during slicing for pathology and avoided the assumption that histology sections are cut from the front faces of tissue slices. The method comprised a 3D reconstruction of histology images, followed by 3D–3D ex vivo–in vivo and in vivo–in vivo image transformations. The 3D reconstruction method minimized fiducial registration error between cross-sections of non-disruptive histology- and ex-vivo-MRI-visible strand-shaped fiducials to reconstruct histology images into the coordinate system of an ex vivo MR image. We quantified the mean±standard deviation target registration error of the reconstruction to be 0.7±0.4 mm, based on the post-reconstruction misalignment of intrinsic landmark pairs. We also compared our fiducial-based reconstruction to an alternative reconstruction based on mutual-information-based registration, an established method for multi-modality registration. We found that the mean target registration error for the fiducial-based method (0.7 mm) was lower than that for the mutual-information-based method (1.2 mm), and that the mutual-information-based method was less robust to initialization error due to multiple sources of error, including the optimizer and the mutual information similarity metric. The second stage of the histology–mpMRI registration used interactively defined 3D–3D deformable thin-plate-spline transformations to align ex vivo to in vivo MR images to compensate for deformation due to endorectal MR coil positioning, surgical resection and formalin fixation. The third stage used interactively defined 3D–3D rigid or thin-plate-spline transformations to co-register in vivo mpMRI images to compensate for patient motion and image distortion. The combined mean registration error of the histology–mpMRI registration was quantified to be 2 mm using manually identified intrinsic landmark pairs. Our data set, comprising mpMRI, target volumes contoured by four observers and co-registered contoured and graded histology images, was used to quantify the positive predictive values and variability of observer scoring of lesions following the Prostate Imaging Reporting and Data System (PI-RADS) guidelines, the variability of target volume contouring, and appropriate expansion margins from target volumes to achieve coverage of histologically defined cancer. The analysis of lesion scoring showed that a PI-RADS overall cancer likelihood of 5, denoting “highly likely cancer”, had a positive predictive value of 85% for Gleason 7 cancer (and 93% for lesions with volumes \u3e0.5 cm3 measured on mpMRI) and that PI-RADS scores were positively correlated with histological grade (ρ=0.6). However, the analysis also showed interobserver differences in PI-RADS score of 0.6 to 1.2 (on a 5-point scale) and an agreement kappa value of only 0.30. The analysis of target volume contouring showed that target volume contours with suitable margins can achieve near-complete histological coverage for detected lesions, despite the presence of high interobserver spatial variability in target volumes. Prostate cancer imaging and delineation have the potential to support multiple stages in the management of localized prostate cancer. Targeted biopsy procedures with optimized targeting based on tumor delineation may help distinguish patients who need treatment from those who need active surveillance. Ongoing monitoring of tumor burden based on delineation in patients undergoing active surveillance may help identify those who need to progress to therapy early while the cancer is still curable. Preferentially targeting therapies at delineated target volumes may lower the morbidity associated with aggressive cancer treatment and improve outcomes in low-intermediate-risk patients. Measurements of the accuracy and variability of lesion scoring and target volume contouring on mpMRI will clarify its value in supporting these roles

    A review of artificial intelligence in prostate cancer detection on imaging

    Get PDF
    A multitude of studies have explored the role of artificial intelligence (AI) in providing diagnostic support to radiologists, pathologists, and urologists in prostate cancer detection, risk-stratification, and management. This review provides a comprehensive overview of relevant literature regarding the use of AI models in (1) detecting prostate cancer on radiology images (magnetic resonance and ultrasound imaging), (2) detecting prostate cancer on histopathology images of prostate biopsy tissue, and (3) assisting in supporting tasks for prostate cancer detection (prostate gland segmentation, MRI-histopathology registration, MRI-ultrasound registration). We discuss both the potential of these AI models to assist in the clinical workflow of prostate cancer diagnosis, as well as the current limitations including variability in training data sets, algorithms, and evaluation criteria. We also discuss ongoing challenges and what is needed to bridge the gap between academic research on AI for prostate cancer and commercial solutions that improve routine clinical care

    Computer-Assisted Characterization of Prostate Cancer on Magnetic Resonance Imaging

    Get PDF
    Prostate cancer (PCa) is one of the most prevalent cancers among men. Early diagnosis can improve survival and reduce treatment costs. Current inter-radiologist variability for detection of PCa is high. The use of multi-parametric magnetic resonance imaging (mpMRI) with machine learning algorithms has been investigated both for improving PCa detection and for PCa diagnosis. Widespread clinical implementation of computer-assisted PCa lesion characterization remains elusive; critically needed is a model that is validated against a histologic reference standard that is densely sampled in an unbiased fashion. We address this using our technique for highly accurate fusion of mpMRI with whole-mount digitized histology of the surgical specimen. In this thesis, we present models for characterization of malignant, benign and confounding tissue and aggressiveness of PCa. Further validation on a larger dataset could enable improved characterization performance, improving survival rates and enabling a more personalized treatment plan

    Accuracy of tumor segmentation from multi-parametric prostate MRI and 18F-choline PET/CT for focal prostate cancer therapy applications

    Full text link
    Abstract Background The study aims to assess the accuracy of multi-parametric prostate MRI (mpMRI) and 18F-choline PET/CT in tumor segmentation for clinically significant prostate cancer. 18F-choline PET/CT and 3 T mpMRI were performed in 10 prospective subjects prior to prostatectomy. All subjects had a single biopsy-confirmed focus of Gleason ≄ 3+4 cancer. Two radiologists (readers 1 and 2) determined tumor boundaries based on in vivo mpMRI sequences, with clinical and pathologic data available. 18F-choline PET data were co-registered to T2-weighted 3D sequences and a semi-automatic segmentation routine was used to define tumor volumes. Registration of whole-mount surgical pathology to in vivo imaging was conducted utilizing two ex vivo prostate specimen MRIs, followed by gross sectioning of the specimens within a custom-made 3D-printed plastic mold. Overlap and similarity coefficients of manual segmentations (seg1, seg2) and 18F-choline-based segmented lesions (seg3) were compared to the pathologic reference standard. Results All segmentation methods greatly underestimated the true tumor volumes. Human readers (seg1, seg2) and the PET-based segmentation (seg3) underestimated an average of 79, 80, and 58% of the tumor volumes, respectively. Combining segmentation volumes (union of seg1, seg2, seg3 = seg4) decreased the mean underestimated tumor volume to 42% of the true tumor volume. When using the combined segmentation with 5 mm contour expansion, the mean underestimated tumor volume was significantly reduced to 0.03 ± 0.05 mL (2.04 ± 2.84%). Substantial safety margins up to 11–15 mm were needed to include all tumors when the initial segmentation boundaries were drawn by human readers or the semi-automated 18F-choline segmentation tool. Combining MR-based human segmentations with the metabolic information based on 18F-choline PET reduced the necessary safety margin to a maximum of 9 mm to cover all tumors entirely. Conclusions To improve the outcome of focal therapies for significant prostate cancer, it is imperative to recognize the full extent of the underestimation of tumor volumes by mpMRI. Combining metabolic information from 18F-choline with MRI-based segmentation can improve tumor coverage. However, this approach requires confirmation in further clinical studies.https://deepblue.lib.umich.edu/bitstream/2027.42/142871/1/13550_2018_Article_377.pd

    Quantification of tumour heterogenity in MRI

    Get PDF
    Cancer is the leading cause of death that touches us all, either directly or indirectly. It is estimated that the number of newly diagnosed cases in the Netherlands will increase to 123,000 by the year 2020. General Dutch statistics are similar to those in the UK, i.e. over the last ten years, the age-standardised incidence rate1 has stabilised at around 355 females and 415 males per 100,000. Figure 1 shows the cancer incidence per gender. In the UK, the rise in lifetime risk of cancer is more than one in three and depends on many factors, including age, lifestyle and genetic makeup

    Image Registration of In Vivo Micro-Ultrasound and Ex Vivo Pseudo-Whole Mount Histopathology Images of the Prostate: A Proof-of-Concept Study

    Full text link
    Early diagnosis of prostate cancer significantly improves a patient's 5-year survival rate. Biopsy of small prostate cancers is improved with image-guided biopsy. MRI-ultrasound fusion-guided biopsy is sensitive to smaller tumors but is underutilized due to the high cost of MRI and fusion equipment. Micro-ultrasound (micro-US), a novel high-resolution ultrasound technology, provides a cost-effective alternative to MRI while delivering comparable diagnostic accuracy. However, the interpretation of micro-US is challenging due to subtle gray scale changes indicating cancer vs normal tissue. This challenge can be addressed by training urologists with a large dataset of micro-US images containing the ground truth cancer outlines. Such a dataset can be mapped from surgical specimens (histopathology) onto micro-US images via image registration. In this paper, we present a semi-automated pipeline for registering in vivo micro-US images with ex vivo whole-mount histopathology images. Our pipeline begins with the reconstruction of pseudo-whole-mount histopathology images and a 3-dimensional (3D) micro-US volume. Each pseudo-whole-mount histopathology image is then registered with the corresponding axial micro-US slice using a two-stage approach that estimates an affine transformation followed by a deformable transformation. We evaluated our registration pipeline using micro-US and histopathology images from 18 patients who underwent radical prostatectomy. The results showed a Dice coefficient of 0.94 and a landmark error of 2.7 mm, indicating the accuracy of our registration pipeline. This proof-of-concept study demonstrates the feasibility of accurately aligning micro-US and histopathology images. To promote transparency and collaboration in research, we will make our code and dataset publicly available

    Prostate Tumor Volume Measurement on Digital Histopathology and Magnetic Resonance Imaging

    Get PDF
    An accurate assessment of prostate tumour burden supports appropriate treatment selection, ranging from active surveillance through focal therapy, to radical whole-prostate therapies. For selected patients, knowledge of the three-dimensional locations and sizes of prostate tumours on pre-procedural imaging supports planning of effective focal therapies that preferentially target tumours, while sparing surrounding healthy tissue. In the post-prostatectomy context, pathologic measurement of tumour burden in the surgical specimen may be an independent prognostic factor determining the need for potentially life-saving adjuvant therapy. An accurate and repeatable method for tumour volume assessment based on histology sections taken from the surgical specimen would be supportive both to the clinical workflow in the post-prostatectomy setting and to imaging validation studies correlating tumour burden measurements on pre-prostatectomy imaging with reference standard histologic tumour volume measurements. Digital histopathology imaging is enabling a transition to a more objective quantification of some surgical pathology assessments, such as tumour volume, that are currently visually estimated by pathologists and subject to inter-observer variability. Histologic tumour volume measurement is challenged by the traditional 3–5 mm sparse spacing of images acquired from sections of radical prostatectomy specimens. Tumour volume estimates may benefit from a well-motivated approach to inter-slide tumour boundary interpolation that crosses these large gaps in a smooth fashion. This thesis describes a new level set-based shape interpolation method that reconstructs smooth 3D shapes based on arbitrary 2D tumour contours on digital histology slides. We measured the accuracy of this approach and used it as a reference standard against which to compare previous approaches in the literature that are simpler to implement in a clinical workflow, with the aim of determining a method for histologic tumour volume estimation that is both accurate and amenable to widespread implementation. We also measured the effect of decreasing inter-slide spacing on the repeatability of histologic tumour volume estimation. Furthermore, we used this histologic reference standard for tumour volume to measure the accuracy, inter-observer variability, and inter-sequence variability of prostate tumour volume estimation based on radiologists’ contouring of multi-parametric magnetic resonance imaging (MPMRI). Our key findings were that (1) simple approaches to histologic tumour volume estimation that are based on 2- or 3-dimensional linear tumour measurements are more accurate than those based on 1-dimensional measurements; (2) although tumour shapes produced by smooth through-slide interpolation are qualitatively substantially different from those obtained from a planimetric approach normally used as a reference standard for histologic tumour volume, the volumes obtained were similar; (3) decreasing inter-slide spacing increases repeatability of histologic tumour volume estimates, and this repeatability decreases rapidly for inter-slide spacing values greater than 5 mm; (4) on MPMRI, observers consistently overestimated tumour volume as compared to the histologic reference standard; and (5) inter-sequence variability in MPMRI-based tumour volume estimation exceeded inter-observer variability

    Toward optimization of target planning for magnetic resonance image-targeted, 3D transrectal ultrasound-guided fusion prostate biopsy

    Get PDF
    The current clinical standard for diagnosis of prostate cancer (PCa) is 2D transrectal ultrasound (TRUS)-guided biopsy. However, this procedure has a false negative rate of 21-47% and therefore many patients return for repeat biopsies. A potential solution for improving upon this problem is “fusion” biopsy, where magnetic resonance imaging (MRI) is used for PCa detection and localization prior to biopsy. In this procedure, tumours are delineated on pre-procedural MRI and registered to the 3D TRUS needle guidance modality. However, fusion biopsy continues to yield false negative results and there remains a gap in knowledge regarding biopsy needle target selection. Within-tumour needle targets are currently chosen ad hoc by the operating clinician without accounting for guidance system and registration errors. The objective of this thesis was to investigate how the choice of target selection strategy and number of biopsy attempts made per lesion may affect PCa diagnosis in the presence of needle delivery error. A fusion prostate biopsy simulation software platform was developed, which allowed for the investigation of how needle delivery error affects PCa diagnosis and cancer burden estimation. Initial work was conducted using 3D lesions contoured on MRI by collaborating radiologists. The results indicated that more than one core must be taken from the majority of lesions to achieve a sampling probability 95% for a biopsy system with needle delivery error ≄ 3.5 mm. Furthermore, it was observed that the optimal targeting scheme depends on the relative levels of systematic and random needle delivery errors inherent to the specific fusion biopsy system. Lastly, PCa tumours contoured on digital histology images by genitourinary pathologists were used to conduct biopsy simulations. The results demonstrated that needle delivery error has a substantial impact on the biopsy core involvement observed, and that targeting of high-grade lesions may result in higher core involvement variability compared with lesions of all grades. This work represents a first step toward improving the manner in which lesions are targeted using fusion biopsy. Successful integration of these findings into current fusion biopsy system operation could lead to earlier PCa diagnosis with the need for fewer repeat biopsy procedures
    • 

    corecore