121 research outputs found

    Hemodynamic study in a real intracranial aneurysm: an in vitro and in silico approach

    Get PDF
    Mestrado de dupla diplomação com o Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - Cefet/RJIntracranial aneurysm (IA) is a cerebrovascular disease with high rates of mortality and morbidity when it ruptures. It is known that changes in the intra-aneurysmal hemodynamic load play a significant factor in the development and rupture of IA. However, these factors are not fully understood. In this sense, the main objective of this work is to study the hemodynamic behavior during the blood analogues flow inside an AI and to determine its influence on the evolution of this pathology. To this end, experimental and numerical studies were carried out, using a real AI model obtained using computerized angiography. In the experimental approach, it was necessary, in the initial phase, to develop and manufacture biomodels from medical images of real aneurysms. Two techniques were used to manufacture the biomodels: rapid prototyping and gravity casting. The materials used to obtain the biomodels were of low cost. After manufacture, the biomodels were compared to each other for their transparency and final structure and proved to be suitable for testing flow visualizations. Numerical studies were performed with the aid of the Ansys Fluent software, using computational fluid dynamics (CFD), using the finite volume method. Subsequently, flow tests were performed experimentally and numerically using flow rates calculated from the velocity curve of a patient's doppler test. The experimental and numerical tests, in steady-state, made it possible to visualize the three-dimensional behavior of the flow inside the aneurysm, identifying the vortex zones created throughout the cardiac cycle. Correlating the results obtained in the two analyzes, it was possible to identify that the areas of vortexes are characterized by low speed and with increasing the fluid flow, the vortexes are positioned closer to the wall. These characteristics are associated with the rupture of an intracranial aneurysm. There was also a good qualitative correlation between numerical and experimental results.O aneurisma intracraniano (AI) é uma patologia cerebrovascular com altas taxas de mortalidade e morbidade quando se rompe. Sabe-se que alterações na carga hemodinâmica intra-aneurismática exerce um fator significativo no desenvolvimento e ruptura de AI, porém, esses fatores não estão totalmente compreendidos. Nesse sentido, o objetivo principal deste trabalho é o de estudar o comportamento hemodinâmico durante o escoamento de fluidos análogos do sangue no interior de um AI e determinar a sua influência na evolução da patologia. Para tal, foram realizados estudos experimentais e numéricos, utilizando um modelo de AI real obtido por meio de uma angiografia computadorizada. Na abordagem experimental foi necessário, na fase inicial, desenvolver e fabricar biomodelos a partir de imagens médicas de um aneurisma real. No fabrico dos biomodelos foram utilizadas duas técnicas: a prototipagem rápida e o vazamento por gravidade. Os materiais utilizados para a obtenção dos biomodelos foram de baixo custo. Após a fabricação, os biomodelos foram comparados entre si quanto à sua transparência e estrutura final e verificou-se serem adequados para testes de visualizações do fluxo. Os estudos numéricos foram realizados com recurso ao software Ansys Fluent, utilizando a dinâmica dos fluidos computacional (CFD), através do método dos volumes finitos. Posteriormente, foram realizados testes de escoamento experimentais e numéricos, utilizando caudais determinados a partir da curva de velocidades do ensaio doppler de um paciente. Os testes experimentais e numéricos, em regime permanente, possibilitaram a visualização do comportamento tridimensional do fluxo no interior do aneurisma, identificando as zonas de vórtices criadas ao longo do ciclo cardíaco. Correlacionando os resultados obtidos nas duas análises, foi possível identificar que as áreas de vórtices são caracterizadas por uma baixa velocidade e com o aumento do caudal os vórtices posicionam-se mais próximos da parede. Essas características apresentadas estão associadas com a ruptura de aneurisma intracraniano. Verificou-se, também, uma boa correlação qualitativa entre os resultados numéricos e experimentais

    Particle image velocimetry measurements of blood flow in aneurysms using 3D printed flow phantoms

    Get PDF
    Cardiovascular diseases (CVD) remain one of the leading causes of deaths worldwide. The formation and presence of aneurysm is a very important question in the study of this CVDs. An aneurysm is a balloon-like bulge on a blood vessel which forms over time. An aneurysm is usually considered to be a result of weakening of the blood vessel walls, this definition has stood over many years without being conclusively proven. Eventually, the aneurysm could clot or burst due to degradation of the aneurysm wall and accumulation of blood. The latter would lead to internal bleeding and result in a stroke. Local hemodynamics have been found to be very important in the study of the evolution of an aneurysm. In this study, a steady flow experimental investigation was conducted using planar Particle Image Velocimetery (PIV) on a rigid flow phantom of an idealised geometry consisting of a curve parent artery and a spherical aneurysm located on the outer convex side of the curvature. The flow phantom was fabricated directly using a commercially available desktop Stereolithography (STL) 3D printer instead of the more conventional investment casting method using a core. Although 3D printing technologies have been around for many years, the fabrication of flow phantoms by direct printing is still largely under-explored. This thesis details the results of investigation into the optimal printing and post-printing procedures required to produce a flow phantom of suitable clarity and transparency. Other important areas of concern such as the geometric accuracy, surface topography and refractive index of the final model are also investigated. A planar PIV is conducted to study the impact of flow rates on the local flow field in and around the aneurysm and their impact on the wall shear stress. It was found that direct 3D printing is appropriate for the fabrication of flow phantoms suitable for PIV or other flow visualisation techniques. It reduces the complexities and time needed compared to the conventional investment casting methods. It was observed that the optical properties of the printed material such as the high refractive index (RI) and the transmittivity of light could cause a problem in large models. From the PIV measurements it was found that flow rates affect the flow field in both the parent artery and the aneurysm. First, high velocities were observed on the outer curvature of the parent artery. Secondly the centre of rotation in the aneurysm is not at the geometric centre but is displaced slightly in the direction of the flow. Finally, the flow rate affects the angle in which flow enters the aneurysm from the parent vessel. This change in the flow angle affects the flow within the aneurysm. A higher flow rate in the parent artery increases the incident angle which brings the centre of rotation closer to the geometric centre of the aneurysm, this changes the location and magnitude of high velocities and hence the local wall shear stress (WSS) on the wall of the aneurysm. This may have implications in the evolution of aneurysms.Mechanical and Industrial Engineerin

    The Influence of Dome Size, Parent Vessel Angle, and Coil Packing Density On Coil Embolization Treatment in Cerebral Aneurysms

    Get PDF
    abstract: A cerebral aneurysm is a bulging of a blood vessel in the brain. Aneurysmal rupture affects 25,000 people each year and is associated with a 45% mortality rate. Therefore, it is critically important to treat cerebral aneurysms effectively before they rupture. Endovascular coiling is the most effective treatment for cerebral aneurysms. During coiling process, series of metallic coils are deployed into the aneurysmal sack with the intent of reaching a sufficient packing density (PD). Coils packing can facilitate thrombus formation and help seal off the aneurysm from circulation over time. While coiling is effective, high rates of treatment failure have been associated with basilar tip aneurysms (BTAs). Treatment failure may be related to geometrical features of the aneurysm. The purpose of this study was to investigate the influence of dome size, parent vessel (PV) angle, and PD on post-treatment aneurysmal hemodynamics using both computational fluid dynamics (CFD) and particle image velocimetry (PIV). Flows in four idealized BTA models with a combination of dome sizes and two different PV angles were simulated using CFD and then validated against PIV data. Percent reductions in post-treatment aneurysmal velocity and cross-neck (CN) flow as well as percent coverage of low wall shear stress (WSS) area were analyzed. In all models, aneurysmal velocity and CN flow decreased after coiling, while low WSS area increased. However, with increasing PD, further reductions were observed in aneurysmal velocity and CN flow, but minimal changes were observed in low WSS area. Overall, coil PD had the greatest impact while dome size has greater impact than PV angle on aneurysmal hemodynamics. These findings lead to a conclusion that combinations of treatment goals and geometric factor may play key roles in coil embolization treatment outcomes, and support that different treatment timing may be a critical factor in treatment optimization.Dissertation/ThesisM.S. Bioengineering 201

    Comparison of two stents in modifying cerebral aneurysm hemodynamics

    Get PDF
    There is a general lack of quantitative understanding about how specific design features of endovascular stents (struts and mesh design, porosity) affect the hemodynamics in intracranial aneurysms. To shed light on this issue, we studied two commercial high-porosity stents (Tristar stent™ and Wallstent®) in aneurysm models of varying vessel curvature as well as in a patientspecific model using Computational Fluid Dynamics. We investigated how these stents modify hemodynamic parameters such as aneurysmal inflow rate, stasis, and wall shear stress, and how such changes are related to the specific designs. We found that the flow damping effect of stents and resulting aneurysmal stasis and wall shear stress are strongly influenced by stent porosity, strut design, and mesh hole shape. We also confirmed that the damping effect is significantly reduced at higher vessel curvatures, which indicates limited usefulness of high-porosity stents as a stand-alone treatment. Finally, we showed that the stasis-inducing performance of stents in 3D geometries can be predicted from the hydraulic resistance of their flat mesh screens. From this, we propose a methodology to cost-effectively compare different stent designs before running a full 3D simulation

    Investigation of Flow Disturbances and Multi-Directional Wall Shear Stress in the Stenosed Carotid Artery Bifurcation Using Particle Image Velocimetry

    Get PDF
    Hemodynamics and shear forces are associated with pathological changes in the vascular wall and its function, resulting in the focal development of atherosclerosis. Flow complexities that develop in the presence of established plaques create environments favourable to thrombosis formation and potentially plaque rupture leading to stroke. The carotid artery bifurcation is a common site of atherosclerosis development. Recently, the multi-directional nature of shear stress acting on the endothelial layer has been highlighted as a risk factor for atherogenesis, emphasizing the need for accurate measurements of shear stress magnitude as well direction. In the absence of comprehensive patient specific datasets numerical simulations of hemodynamics are limited by modeling assumptions. The objective of this thesis was to investigate the relative contributions of various factors - including geometry, rheology, pulsatility, and compliance – towards the development of disturbed flow and multi-directional wall shear stress (WSS) parameters related to the development of atherosclerosis An experimental stereoscopic particle image velocimetry (PIV) system was used to measure instantaneous full-field velocity in idealized asymmetrically stenosed carotid artery bifurcation models, enabling the extraction of bulk flow features and turbulence intensity (TI). The velocity data was combined with wall location information segmented from micro computed tomography (CT) to obtain phase-averaged maps of WSS magnitude and direction. A comparison between Newtonian and non-Newtonian blood-analogue fluids demonstrated that the conventional Newtonian viscosity assumption underestimates WSS magnitude while overestimating TI. Studies incorporating varying waveform pulsatility demonstrated that the levels of TI and oscillatory shear index (OSI) depend on the waveform amplitude in addition to the degree of vessel constriction. Local compliance resulted in a dampening of disturbed flow due to volumetric capacity of the upstream vessel, however wall tracking had a negligible effect on WSS prediction. While the degree of stenosis severity was found to have a dominant effect on local hemodynamics, comparable relative differences in metrics of flow and WSS disturbances were found due to viscosity model, waveform pulsatility and local vessel compliance

    Flow Dynamics in Cardiovascular Devices: A Comprehensive Review

    Get PDF
    This review explores flow dynamics in cardiovascular devices, focusing on fundamental fluid mechanics principles and normal blood flow patterns. It discusses the role of different structures in maintaining flow dynamics and the importance of stents, heart valves, artificial hearts, and ventricular assist devices in cardiovascular interventions. The review emphasizes the need for optimized designs and further research to enhance knowledge of flow dynamics in cardiovascular devices, advancing the field and improving patient care in cardiovascular interventions

    Enhancing magnetic resonance imaging with computational fluid dynamics

    Get PDF
    Quantitative assessment of haemodynamics has been utilised for better understanding of cardiac function and assisting diagnostics of cardiovascular diseases. To study haemodynamics, magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) are widely used because of their non-invasive nature. It has been demonstrated that the two approaches are complementary to each other with their own advantages and limitations. Four dimensional cardiovascular magnetic resonance (4D Flow CMR) imaging enables direct measurement of blood flow velocity in vivo while spatial and temporal resolutions as well as region of image acquisition are limited to achieve a detailed assessment of the haemodynamics. CFD, on the other hand, is a powerful tool that has the potential to expand the image-obtained velocity fields with some problem-specific assumptions such as rigid arterial walls. We suggest a novel approach in which 4D Flow CMR and CFD are integrated synergistically in order to obtain an enhanced 4D Flow CMRI (EMRI). The enhancement will consist in overcoming the spatial-resolution limitations of the original 4D Flow CMRI, which will enable more accurate quantification of flow dependent bio-mechanical quantities (e.g. endothelial shear stress) as well as non-invasive estimation of blood pressure. At the same time, it will reduce a number of assumptions in conventional haemodynamic CFD such as in/outflow conditions including the effect of valves, the impact of patient-specific vessel wall motion and the effect of the surrounding tissues. The approach was first tested on a 2D portion of a pipe, to understand the behaviour of the parameters of the model in this novel framework. Afterwards the methodology was tested on patient specific data, to apply it to the analysis of blood flow in a patient specific human aorta, in 2D. The outcomes of EMRI are assessed by comparing the computed velocities with the 4D Flow CMR one. A fundamental step to allow the translation to clinics of this methodology was the validation. The study was performed on an idealised-simplified model of the human aortic arch – a U bend – with a sinusoidal inflow applied by a pump. Firstly, phase resolved particle image velocimetry (PIV) (an experimental technique enables high spatial-temporal resolution) was performed in 5 different time points of the pump cycle, using a blood alike fluid with the same refractive index matched of the clear silicon phantom, and seeded with silver coated hollow glass spheres. Real time 4D Flow CMR was then performed on the phantom with MRI. Lastly using the pump flow rate and the phantom geometry, a computation of the flow through the U bend was conducted using Ansys CFX. The flow patterns obtained from the 3 methods were compared in the middle plane of the phantom. The methodology was then applied to study a patient specific aorta in 3D, and retrieve flow patterns and flow dependent parameters. Finally, the validated methodology was applied to study atherogenesis, and in particular to investigate the relation between EMRI retrieved flow quantities (e.g. wall shear stress (WSS)) and temperature heterogeneity. A carotid artery phantom was realised and studied with CFD, MRT and EMRI. All the results demonstrate that EMRI preserves flow structures while correcting for experimental noise. Therefore it can provide better insights of the haemodynamics of cardiovascular problems, overcoming the limitations of 4D Flow CMR and CFD, even when considering a small region of interest. These findings were supported by the validation experiment that showed how EMRI retrieved flow patterns were much more consistent with the one measured with high resolution PIV, compensating for 4D Flow CMR errors. These findings lead to the application to the atherogenesis problem, allowing higher resolution flow patterns, more suitable to be compared to the temperature distribution and highlighted how flow patterns exert an influence on the temperature distribution on the vessel wall. EMRI confirmed its potential to provide more accurate non-invasive estimation of flow derived and flow dependent quantities and become a novel diagnostic tool

    Computational and Experimental Evaluation of Actuating Shape Memory Polymer Foams in the Context of Aneurysm Treatment

    Get PDF
    Shape memory polymer foams may be used to treat vascular aneurysms through thermal actuation of the foam from a compacted to an expanded configuration within the aneurysm structure, thereby alleviating blood pressure on the weakened aneurysm walls and reducing potential for rupture. After delivery to the aneurysm site, fiber-delivered laser light absorbed by the foam structure is converted into thermal energy, and actuation of the foam results. Introduction of nonphysiological energy into the body during foam actuation necessitates an evaluation of potential thermal damage to nearby tissue. In the present investigation, the foam is idealized as a heat-dissipating, volumetrically static object centered in a straight tube of flowing water. Velocity profiles around the heat-dissipating device are acquired experimentally with particle image velocimetry. A computational fluid dynamics package is then used to predict the experimental velocity profiles and temperature distributions by numerical solution of the Navier-Stokes and energy equations, and agreement between the computational solution and experimental results is assessed. Discussion of this assessment, as well as several preliminary procedures leading up to the creation of the heat-dissipating device and critical analysis of the methods employed, is also given. PIV and CFD are found to be in reasonable agreement with one another. Using laser-induced fluorescence as a temperature measurement modality, which is discussed in the text insofar as the technique was attempted several times and failed, together with PIV and CFD provides a formidable array of techniques exists to characterize flow around a heated device

    Experimental Investigation of the Flow Dynamics in Models of Patient-Specific Aneurysms

    Get PDF
    This work investigates the complex flow dynamics in patient-specific compliant models of Abdominal Aortic Aneurysms (AAA) using time-resolved Particle Image Velocimetry (PIV). Scans of multiple planes were performed on three different models: a healthy aorta, a 4-cm saccular AAA, and a 7-cm fusiform AAA. We discuss the differences in flow patterns in patient-specific models compared to idealized models from previous work. We note that the curvature of the aorta upstream from the aneurysm, specific placement of the iliac arteries, and the overall symmetry of the aneurysm have important effects on flow structures, such as increasing transient effects, vortex formation, and wall impingement. Viscous energy dissipation rate (VEDr) was also evaluated as it has been previously identified as a potentially good metric to assess the severity of some vascular diseases. Finally, a modal analysis was performed on the velocity fields using Proper Orthogonal Decomposition (POD). The main modes obtained were inspected to identify the dominant structures, and the distribution of energy between the modes (Shannon entropy), and to create a reduced-order model of the flow. The results show that Shannon entropy was significantly different between the three models, suggesting that it can be a promising clinical parameter to evaluate the severity of AAAs
    • …
    corecore