1,587 research outputs found

    Capturing 3D textured inner pipe surfaces for sewer inspection

    Get PDF
    Inspection robots equipped with TV camera technology are commonly used to detect defects in sewer systems. Currently, these defects are predominantly identified by human assessors, a process that is not only time-consuming and costly but also susceptible to errors. Furthermore, existing systems primarily offer only information from 2D imaging for damage assessment, limiting the accurate identification of certain types of damage due to the absence of 3D information. Thus, the necessary solid quantification and characterisation of damage, which is needed to evaluate remediation measures and the associated costs, is limited from the sensory side. In this paper, we introduce an innovative system designed for acquiring multimodal image data using a camera measuring head capable of capturing both color and 3D images with high accuracy and temporal availability based on the single-shot principle. This sensor head, affixed to a carriage, continuously captures the sewer's inner wall during transit. The collected data serves as the basis for an AI-based automatic analysis of pipe damages as part of the further assessment and monitoring of sewers. Moreover, this paper is focused on the fundamental considerations about the design of the multimodal measuring head and elaborates on some application-specific implementation details. These include data pre-processing, 3D reconstruction, registration of texture and depth images, as well as 2D-3D registration and 3D image fusion

    Single-pass inline pipeline 3D reconstruction using depth camera array

    Get PDF
    A novel inline inspection (ILI) approach using depth cameras array (DCA) is introduced to create high-fidelity, dense 3D pipeline models. A new camera calibration method is introduced to register the color and the depth information of the cameras into a unified pipe model. By incorporating the calibration outcomes into a robust camera motion estimation approach, dense and complete 3D pipe surface reconstruction is achieved by using only the inline image data collected by a self-powered ILI rover in a single pass through a straight pipeline. The outcomes of the laboratory experiments demonstrate one-millimeter geometrical accuracy and 0.1-pixel photometric accuracy. In the reconstructed model of a longer pipeline, the proposed method generates the dense 3D surface reconstruction model at the millimeter level accuracy with less than 0.5% distance error. The achieved performance highlights its potential as a useful tool for efficient in-line, non-destructive evaluation of pipeline assets

    Planning and Navigation in Dynamic Environments for Mobile Robots and Micro Aerial Vehicles

    Get PDF
    Reliable and robust navigation planning and obstacle avoidance is key for the autonomous operation of mobile robots. In contrast to stationary industrial robots that often operate in controlled spaces, planning for mobile robots has to take changing environments and uncertainties into account during plan execution. In this thesis, planning and obstacle avoidance techniques are proposed for a variety of ground and aerial robots. Common to most of the presented approaches is the exploitation of the nature of the underlying problem to achieve short planning times by using multiresolution or hierarchical approaches. Short planning times allow for continuous and fast replanning to take the uncertainty in the environment and robot motion execution into account. The proposed approaches are evaluated in simulation and real-world experiments. The first part of this thesis addresses planning for mobile ground robots. One contribution is an approach to grasp and object removal planning to pick objects from a transport box with a mobile manipulation robot. In a multistage process, infeasible grasps are pruned in offline and online processing steps. Collision-free endeffector trajectories are planned to the remaining grasps until a valid removal trajectory can be found. An object-centric local multiresolution representation accelerates trajectory planning. The mobile manipulation components are evaluated in an integrated mobile bin-picking system. Local multiresolution planning is employed for path planning for humanoid soccer robots as well. The used Nao robot is equipped with only relatively low computing power. A resource-efficient path planner including the anticipated movements of opponents on the field is developed as part of this thesis. In soccer games an important subproblem is to reach a position behind the ball to dribble or kick it towards the goal. By the assumption that the opponents have the same intention, an explicit representation of their movements is possible. This leads to paths that facilitate the robot to reach its target position with a higher probability without being disturbed by the other robot. The evaluation for the planner is performed in a physics-based soccer simulation. The second part of this thesis covers planning and obstacle avoidance for micro aerial vehicles (MAVs), in particular multirotors. To reduce the planning complexity, the planning problem is split into a hierarchy of planners running on different levels of abstraction, i.e., from abstract to detailed environment descriptions and from coarse to fine plans. A complete planning hierarchy for MAVs is presented, from mission planners for multiple application domains to low-level obstacle avoidance. Missions planned on the top layer are executed by means of coupled allocentric and egocentric path planning. Planning is accelerated by global and local multiresolution representations. The planners can take multiple objectives into account in addition to obstacle costs and path length, e.g., sensor constraints. The path planners are supplemented by trajectory optimization to achieve dynamically feasible trajectories that can be executed by the underlying controller at higher velocities. With the initialization techniques presented in this thesis, the convergence of the optimization problem is expedited. Furthermore, frequent reoptimization of the initial trajectory allows for the reaction to changes in the environment without planning and optimizing a complete new trajectory. Fast, reactive obstacle avoidance based on artificial potential fields acts as a safety layer in the presented hierarchy. The obstacle avoidance layer employs egocentric sensor data and can operate at the data acquisition frequency of up to 40 Hz. It can slow-down and stop the MAVs in front of obstacles as well as avoid approaching dynamic obstacles. We evaluate our planning and navigation hierarchy in simulation and with a variety of MAVs in real-world applications, especially outdoor mapping missions, chimney and building inspection, and automated stocktaking.Planung und Navigation in dynamischen Umgebungen fĂŒr mobile Roboter und Multikopter ZuverlĂ€ssige und sichere Navigationsplanung und Hindernisvermeidung ist ein wichtiger Baustein fĂŒr den autonomen Einsatz mobiler Roboter. Im Gegensatz zu klassischen Industrierobotern, die in der Regel in abgetrennten, kontrollierten Bereichen betrieben werden, ist es in der mobilen Robotik unerlĂ€sslich, Änderungen in der Umgebung und die Unsicherheit bei der AktionsausfĂŒhrung zu berĂŒcksichtigen. Im Rahmen dieser Dissertation werden Verfahren zur Planung und Hindernisvermeidung fĂŒr eine Reihe unterschiedlicher Boden- und Flugroboter entwickelt und vorgestellt. Den meisten beschriebenen AnsĂ€tzen ist gemein, dass die Struktur der zu lösenden Probleme ausgenutzt wird, um Planungsprozesse zu beschleunigen. HĂ€ufig ist es möglich, mit abnehmender Genauigkeit zu planen desto weiter eine Aktion in der Zeit oder im Ort entfernt ist. Dieser Ansatz wird lokale Multiresolution genannt. In anderen FĂ€llen ist eine Zerlegung des Problems in Schichten unterschiedlicher Genauigkeit möglich. Die damit zu erreichende Beschleunigung der Planung ermöglicht ein hĂ€ufiges Neuplanen und somit die Reaktion auf Änderungen in der Umgebung und Abweichungen bei den ausgefĂŒhrten Aktionen. Zur Evaluation der vorgestellten AnsĂ€tze werden Experimente sowohl in der Simulation als auch mit Robotern durchgefĂŒhrt. Der erste Teil dieser Dissertation behandelt Planungsmethoden fĂŒr mobile Bodenroboter. Um Objekte mit einem mobilen Roboter aus einer Transportkiste zu greifen und zur Weiterverarbeitung zu einem Arbeitsplatz zu liefern, wurde ein System zur Planung möglicher Greifposen und hindernisfreier Endeffektorbahnen entwickelt. In einem mehrstufigen Prozess werden mögliche Griffe an bekannten Objekten erst in mehreren Vorverarbeitungsschritten (offline) und anschließend, passend zu den erfassten Objekten, online identifiziert. Zu den verbleibenden möglichen Griffen werden Endeffektorbahnen geplant und, bei Erfolg, ausgefĂŒhrt. Die Greif- und Bahnplanung wird durch eine objektzentrische lokale Multiresolutionskarte beschleunigt. Die Einzelkomponenten werden in einem prototypischen Gesamtsystem evaluiert. Eine weitere Anwendung fĂŒr die lokale Multiresolutionsplanung ist die Pfadplanung fĂŒr humanoide Fußballroboter. Zum Einsatz kommen Nao-Roboter, die nur ĂŒber eine sehr eingeschrĂ€nkte Rechenleistung verfĂŒgen. Durch die Reduktion der PlanungskomplexitĂ€t mit Hilfe der lokalen Multiresolution, wurde die Entwicklung eines Planers ermöglicht, der zusĂ€tzlich zur aktuellen Hindernisfreiheit die Bewegung der Gegenspieler auf dem Feld berĂŒcksichtigt. Hierbei liegt der Fokus auf einem wichtigen Teilproblem, dem Erreichen einer guten Schussposition hinter dem Ball. Die Tatsache, dass die Gegenspieler vergleichbare Ziele verfolgen, ermöglicht es, Annahmen ĂŒber mögliche Laufwege zu treffen. Dadurch ist die Planung von Pfaden möglich, die das Risiko, durch einen Gegenspieler passiv geblockt zu werden, reduzieren, so dass die Schussposition schneller erreicht wird. Dieser Teil der Arbeit wird in einer physikalischen Fußballsimulation evaluiert. Im zweiten Teil dieser Dissertation werden Methoden zur Planung und Hindernisvermeidung von Multikoptern behandelt. Um die PlanungskomplexitĂ€t zu reduzieren, wird das zu lösenden Planungsproblem hierarchisch zerlegt und durch verschiedene Planungsebenen verarbeitet. Dabei haben höhere Planungsebenen eine abstraktere Weltsicht und werden mit niedriger Frequenz ausgefĂŒhrt, zum Beispiel die Missionsplanung. Niedrigere Ebenen haben eine Weltsicht, die mehr den Sensordaten entspricht und werden mit höherer Frequenz ausgefĂŒhrt. Die GranularitĂ€t der resultierenden PlĂ€ne verfeinert sich hierbei auf niedrigeren Ebenen. Im Rahmen dieser Dissertation wurde eine komplette Planungshierarchie fĂŒr Multikopter entwickelt, von Missionsplanern fĂŒr verschiedene Anwendungsgebiete bis zu schneller Hindernisvermeidung. Pfade zur AusfĂŒhrung geplanter Missionen werden durch zwei gekoppelte Planungsebenen erstellt, erst allozentrisch, und dann egozentrisch verfeinert. Hierbei werden ebenfalls globale und lokale MultiresolutionsreprĂ€sentationen zur Beschleunigung der Planung eingesetzt. ZusĂ€tzlich zur Hindernisfreiheit und LĂ€nge der Pfade können auf diesen Planungsebenen weitere Zielfunktionen berĂŒcksichtigt werden, wie zum Beispiel die BerĂŒcksichtigung von Sensorcharakteristika. ErgĂ€nzt werden die Planungsebenen durch die Optimierung von Flugbahnen. Diese Flugbahnen berĂŒcksichtigen eine angenĂ€herte Flugdynamik und erlauben damit ein schnelleres Verfolgen der optimierten Pfade. Um eine schnelle Konvergenz des Optimierungsproblems zu erreichen, wurde in dieser Arbeit ein Verfahren zur Initialisierung entwickelt. Des Weiteren kommen Methoden zur schnellen Verfeinerung des Optimierungsergebnisses bei Änderungen im Weltzustand zum Einsatz, diese ermöglichen die Reaktion auf neue Hindernisse oder Abweichungen von der Flugbahn, ohne eine komplette Flugbahn neu zu planen und zu optimieren. Die Sicherheit des durch die Planungs- und Optimierungsebenen erstellten Pfades wird durch eine schnelle, reaktive Hindernisvermeidung gewĂ€hrleistet. Das Hindernisvermeidungsmodul basiert auf der Methode der kĂŒnstlichen Potentialfelder. Durch die Verwendung dieser schnellen Methode kombiniert mit der Verwendung von nicht oder nur ĂŒber kurze ZeitrĂ€ume aggregierte Sensordaten, ermöglicht die Reaktion auf unbekannte Hindernisse, kurz nachdem diese von den Sensoren wahrgenommen wurden. Dabei kann der Multikopter abgebremst oder gestoppt werden, und sich von nĂ€hernden Hindernissen entfernen. Die Komponenten der Planungs- und Hindernisvermeidungshierarchie werden sowohl in der Simulation evaluiert, als auch in integrierten Gesamtsystemen mit verschiedenen Multikoptern in realen Anwendungen. Dies sind insbesondere die Kartierung von Innen- und Außenbereichen, die Inspektion von GebĂ€uden und Schornsteinen sowie die automatisierte Inventur von LĂ€gern

    A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure

    Get PDF
    To ensure the safety and the serviceability of civil infrastructure it is essential to visually inspect and assess its physical and functional condition. This review paper presents the current state of practice of assessing the visual condition of vertical and horizontal civil infrastructure; in particular of reinforced concrete bridges, precast concrete tunnels, underground concrete pipes, and asphalt pavements. Since the rate of creation and deployment of computer vision methods for civil engineering applications has been exponentially increasing, the main part of the paper presents a comprehensive synthesis of the state of the art in computer vision based defect detection and condition assessment related to concrete and asphalt civil infrastructure. Finally, the current achievements and limitations of existing methods as well as open research challenges are outlined to assist both the civil engineering and the computer science research community in setting an agenda for future research

    Towards Intelligent Telerobotics: Visualization and Control of Remote Robot

    Get PDF
    Human-machine cooperative or co-robotics has been recognized as the next generation of robotics. In contrast to current systems that use limited-reasoning strategies or address problems in narrow contexts, new co-robot systems will be characterized by their flexibility, resourcefulness, varied modeling or reasoning approaches, and use of real-world data in real time, demonstrating a level of intelligence and adaptability seen in humans and animals. The research I focused is in the two sub-field of co-robotics: teleoperation and telepresence. We firstly explore the ways of teleoperation using mixed reality techniques. I proposed a new type of display: hybrid-reality display (HRD) system, which utilizes commodity projection device to project captured video frame onto 3D replica of the actual target surface. It provides a direct alignment between the frame of reference for the human subject and that of the displayed image. The advantage of this approach lies in the fact that no wearing device needed for the users, providing minimal intrusiveness and accommodating users eyes during focusing. The field-of-view is also significantly increased. From a user-centered design standpoint, the HRD is motivated by teleoperation accidents, incidents, and user research in military reconnaissance etc. Teleoperation in these environments is compromised by the Keyhole Effect, which results from the limited field of view of reference. The technique contribution of the proposed HRD system is the multi-system calibration which mainly involves motion sensor, projector, cameras and robotic arm. Due to the purpose of the system, the accuracy of calibration should also be restricted within millimeter level. The followed up research of HRD is focused on high accuracy 3D reconstruction of the replica via commodity devices for better alignment of video frame. Conventional 3D scanner lacks either depth resolution or be very expensive. We proposed a structured light scanning based 3D sensing system with accuracy within 1 millimeter while robust to global illumination and surface reflection. Extensive user study prove the performance of our proposed algorithm. In order to compensate the unsynchronization between the local station and remote station due to latency introduced during data sensing and communication, 1-step-ahead predictive control algorithm is presented. The latency between human control and robot movement can be formulated as a linear equation group with a smooth coefficient ranging from 0 to 1. This predictive control algorithm can be further formulated by optimizing a cost function. We then explore the aspect of telepresence. Many hardware designs have been developed to allow a camera to be placed optically directly behind the screen. The purpose of such setups is to enable two-way video teleconferencing that maintains eye-contact. However, the image from the see-through camera usually exhibits a number of imaging artifacts such as low signal to noise ratio, incorrect color balance, and lost of details. Thus we develop a novel image enhancement framework that utilizes an auxiliary color+depth camera that is mounted on the side of the screen. By fusing the information from both cameras, we are able to significantly improve the quality of the see-through image. Experimental results have demonstrated that our fusion method compares favorably against traditional image enhancement/warping methods that uses only a single image

    Measuring the interior of in-use sewage pipes using 3D vision

    Get PDF
    Sewage pipes may be renovated using tailored linings. However, the interior diameter of the pipes must be measured prior to renovation. This paper investigates the use of 3D vision sensors for measuring the interior diameter of sewage pipes, removing the need for human entry in the pipes. The 3D sensors are residing in a waterproof box that is lowered into the well. A RANSAC-based method is used for cylinder estimation from the acquired point clouds of the pipe and the diameter of these cylinders is used as a measure of the interior pipe diameter. The method is tested in 74 real-world sewage pipes with diameters between 150- and 1100 mm. The diameter of 68 pipes is measured within a tolerance of ±20mm whereas 8 pipes are above. It was found that the faulty estimates can be detected in the field using a combination of human-in-the-loop qualitative and quantitative data-driven measures.</p

    Error analysis and calibration for a novel pipe profiling tool

    Get PDF
    Integrity of industrial pipework is ensured through routine inspection. Internal visual inspection tools are capable of characterising degradation in the form of corrosion, pitting, erosion and cracking. The accuracy of such inspection systems has a direct impact on decisions regarding the remaining lifetime of the asset. By minimising error margins, the asset may be operated with confidence for longer, with less uncertainty. This paper considers a probe system consisting of a laser profiler and camera that produces a textured 3D model of the internals of 2 – 6 inch pipework. The accuracy of the system is defined by the ability to extract laser projections from an image as it travels down the pipe, to accurately reconstruct these projections into 3D and to estimate the probe trajectory as it travels through the pipe. This paper presents an error model of the laser profiler. It then presents a novel calibration routine to reduce the error caused by misalignment and tolerances during fabrication of the system. A key advantage of the proposed calibration technique over alternatives is that we can calibrate for errors without manually adjusting the probe, which enables fabrication of a smaller more robust measurement system. In lab-based trials our calibration technique reduced peak sizing errors from 2.7mm to 0.14mm in 120mm diameter pipes

    Meta reinforcement learning based underwater manipulator control

    Get PDF
    Robots have garnered significant attention owing to their advantages in terms of replacing human labor under hazardous environments. In particular, because underwater construction robots can perform various tasks that are highly dangerous under deep sea environments, the development of manipulator control technology for these underwater robots is crucial. In this study, we therefore introduce an underwater manipulator control method based on meta reinforcement learning. Specifically, we construct a real-world underwater robot manipulator environment using ROS Gazebo and conduct simulations for the testing and verification of the proposed method

    Structure-from-motion based image unwrapping and stitching for small bore pipe inspections

    Get PDF
    Visual inspection is one of the most ubiquitous forms of non-destructive testing, being widely used in routine pipe inspections. For small bore pipes (centimetre diameter), inspectors often have a restricted field of view limiting overall image and inspection quality. Stitching multiple unwrapped images is a common inspection technique to provide a full view inspection image by combining multiple video frames together. A key challenge of this method is knowing the camera pose of each frame. Consequently, mechanical centralisers are often utilised to ensure the camera is located centrally. For the inspection of small-bore pipes, such mechanical centralisers are often too large to fit. This paper presents a post-processing, Structure-from-Motion (SfM) based approach to unwrap and stitch inspection images, captured by a manually deployed commercial videoscope. It advances state-of-the-art approaches which rely on the projection of a laser pattern into the field of view, thus reducing the equipment size. The process consists of camera pose estimation, preliminary point cloud generation, secondary fitting, images unwrapping and stitching to form an undistorted view of the pipe interior. Two industrial focussed demonstrators verified the successful implementation for small-bore pipe inspections. Whereby the new approach does not rely on image features to create the surface texture and is less sensitive to the image quality, more areas can be retrieved from inspections. The reconstructed area was increased by up to 87% using the new approach versus the conventional 3D model

    Development of Transformations between Designed and Built Structural Systems and Pipe Assemblies

    Get PDF
    Fabrication of steel assemblies is a challenging process using existing machines to perform the tasks involved such as cutting, drilling, and punching. Due to inaccuracies in the fabrication processes, imperfections will inevitably happen. In addition to the fabrication inaccuracies, errors may occur during transportation or due to the temperature changes on construction sites. These challenges become more important in the offsite construction as it requires sequenced fabrication, transportation and installation. Current approaches for quality inspection, in general, and discrepancy analysis, in particular, lack a sufficient level of automation and are prone to error due to the intensive manual work involved. Hence, a proactive framework is substantially required to systematically monitor the fabrication process and control the accuracy of assemblies in order to expedite the erection and installation processes. Additionally, finding defective assemblies is traditionally done through fitting trials on construction sites, which has always been a key challenge as it is associated with rework. Furthermore, realigning the defective assemblies is currently performed based on the workers’ experience and lacks automated planning. Therefore, detecting the defective parts in a timely manner and in a systematic way can expedite the erection process and avoids significant delays in construction projects and huge costs as a consequence. This research aims to improve the fabrication and installation processes by detecting the incurred inaccuracies automatically and plan for realignment of the defective components systematically. In summary, the required framework to achieve these objectives includes four primary steps: (1) Preprocessing and basic compliance checking, (2) Spatial discrepancy detection and characterization, (3) Calculation of the required alignments and adjustments, and (4) Generalization of the realignment planning and actuation strategy frameworks for parallel systems. The automated compliance checking and discrepancy analysis is performed employing advanced 3D imaging technologies which have recently opened up a wide range of solutions to acquire as-built status. Characterization of the detected discrepancies is performed by employing robotics forward kinematics concepts and combining with 3D imaging techniques. The required alignment is calculated accordingly using the robotic analogy and inverse kinematic concept. Although the proposed approach can be applied in any types of construction assembly, this thesis mainly focuses on industrial facilities such as steel pipe modules and pipe spools, in particular. Contributions of developing the described framework include: (1) Developing a proactive strategy for rework avoidance, (2) Algorithmic and programmable framework, (3) Efficiency and robustness of the functions and metrics developed, and (4) Time effectiveness of the framework
    • 

    corecore