7,402 research outputs found

    Stochastic model for the 3D microstructure of pristine and cyclically aged cathodes in Li-ion batteries

    Full text link
    It is well-known that the microstructure of electrodes in lithium-ion batteries strongly affects their performance. Vice versa, the microstructure can exhibit strong changes during the usage of the battery due to aging effects. For a better understanding of these effects, mathematical analysis and modeling has turned out to be of great help. In particular, stochastic 3D microstructure models have proven to be a powerful and very flexible tool to generate various kinds of particle-based structures. Recently, such models have been proposed for the microstructure of anodes in lithium-ion energy and power cells. In the present paper, we describe a stochastic modeling approach for the 3D microstructure of cathodes in a lithium-ion energy cell, which differs significantly from the one observed in anodes. The model for the cathode data enhances the ideas of the anode models, which have been developed so far. It is calibrated using 3D tomographic image data from pristine as well as two aged cathodes. A validation based on morphological image characteristics shows that the model is able to realistically describe both, the microstructure of pristine and aged cathodes. Thus, we conclude that the model is suitable to generate virtual, but realistic microstructures of lithium-ion cathodes

    Characterization and Modeling of Non-Uniform Charge Collection in CVD Diamond Pixel Detectors

    Full text link
    A pixel detector with a CVD diamond sensor has been studied in a 180 GeV/c pion beam. The charge collection properties of the diamond sensor were studied as a function of the track position, which was measured with a silicon microstrip telescope. Non-uniformities were observed on a length scale comparable to the diamond crystallites size. In some regions of the sensor, the charge drift appears to have a component parallel to the sensor surface (i.e., normal to the applied electric field) resulting in systematic residuals between the track position and the hits position as large as 40 ÎĽ\mum. A numerical simulation of the charge drift in polycrystalline diamond was developed to compute the signal induced on the electrodes by the electrons and holes released by the passing particles. The simulation takes into account the crystallite structure, non-uniform trapping across the sensor, diffusion and polarization effects. It is in qualitative agreement with the data. Additional lateral electric field components result from the non-uniform trapping of charges in the bulk. These provide a good explanation for the large residuals observed.Comment: Accepted by Nucl. Instr. and Met

    Development of X-ray Tomography Tools for Characterisation of Lithium-Sulfur Batteries

    Get PDF
    Electrochemical energy storage devices are becoming increasingly ubiquitous in both consumer and industrial applications, driven by a pressing need to reduce carbon emissions for the mitigation of global warming. The electrification of the transport and mobility sector and growth in portable electronic devices demand portable power sources with high energy densities, and lithium-ion (Li-ion) batteries have been adopted extensively in these applications. However, conventional transition metal oxide-based intercalation materials used at the positive electrode are reaching their theoretical limitations, and only relatively minor improvements in theoretical specific capacity can be achieved. // Lithium-sulfur (Li-S) batteries offer higher gravimetric theoretical specific capacity and energy density and are billed as a potential successor to Li-ion technology but suffer from limited cycle life and self-discharge due to complex multi-phase chemistry and parasitic side reactions. // To better understand the fundamental mechanisms behind these processes, advanced characterisation methods involving the use of penetrating radiation (such as X-rays and neutrons) have become invaluable tools to capture the operation and degradation of the Li-S battery. Three-dimensional techniques such as X-ray micro-tomography (micro-CT) are particularly suited to probe the heterogeneous nature of battery electrode microstructures. // In this thesis, main areas of focus will include the application of ex situ and in situ X-ray micro-CT on Li-S batteries and the broader development of in situ tomography cells. The overall scientific aims of this thesis include: measuring the three-dimensional microstructural characteristics of sulfur electrodes; elucidating the three-dimensional nature of both sulfur dissolution and redeposition as a function of state of charge; and developing a better understanding of the transport processes occurring within the Li-S battery and the influence of porosity and tortuosity on electrochemical performance. In parallel, the development of in situ tomography cells capable of electrochemical cycling is an extensive component of this thesis, with applications not solely limited to Li-S batteries or X-ray micro-CT

    Characterization of Segmented Large Volume, High Purity Germanium Detectors

    Get PDF
    Gamma ray tracking in future HPGe arrays like AGATA will rely on pulse shape analysis (PSA) of multiple Gamma interactions. For this purpose, a simple and fast procedure was developed which enabled the first full characterization of a segmented large volume HPGe detector. An analytical model for the hole mobility in a Ge crystal lattice was developed to describe the hole drift anisotropy with experimental velocity values along the crystal axis as parameters. The new model is based on the drifted Maxwellian hole distribution in Ge. It is verified by reproducing successfully experimental longitudinal hole anisotropy data. A comparison between electron and hole mobility shows large differences for the longitudinal and tangential velocity anisotropy as a function of the electrical field orientation. Measurements on a 12 fold segmented, n-type, large volume, irregular shaped HPGe detector were performed in order to determine the parameters of anisotropic mobility for electrons and holes as charge carriers created by gamma ray interactions. To characterize the electron mobility the complete outer detector surface was scanned in small steps employing photopeak interactions at 60keV. A precise measurement of the hole drift anisotropy was performed with 356keV rays. The drift velocity anisotropy and crystal geometry cause considerable rise time differences in pulse shapes depending on the position of the spatial charge carrier creation. Pulse shapes of direct and transient signals are reproduced by weighting potential calculations with high precision. The measured angular dependence of rise times is caused by the anisotropic mobility, crystal geometry, changing field strength and space charge effects. Preamplified signals were processed employing digital spectroscopy electronics. Response functions, crosstalk contributions and averaging procedures were taken into account implying novel methods due to the segmentation of the Ge-crystal and the digital electronics. The results are relevant for the future gamma ray tracking detectors where high precision of position information of single gamma ray interactions is required. The high accuracy in simulation enabled very high position resolution using PSA. The first application of this technique in a real experiment aimed at the correction for crystal bending imperfections in a Bragg-spectrometer. A position resolution of 1.4mm (sigma) was achieved with 184keV gamma rays employing the fully characterized detector. By careful characterization of the electronic noise, this result is expected to improve further upon use of optimized filters

    Validation of Transcranial Electrical Stimulation (TES) Finite Element Modeling Against MREIT Current Density Imaging in Human Subjects

    Get PDF
    abstract: Transcranial electrical stimulation (tES) is a non-invasive brain stimulation therapy that has shown potential in improving motor, physiological and cognitive functions in healthy and diseased population. Typical tES procedures involve application of weak current (< 2 mA) to the brain via a pair of large electrodes placed on the scalp. While the therapeutic benefits of tES are promising, the efficacy of tES treatments is limited by the knowledge of how current travels in the brain. It has been assumed that the current density and electric fields are the largest, and thus have the most effect, in brain structures nearby the electrodes. Recent studies using finite element modeling (FEM) have suggested that current patterns in the brain are diffuse and not concentrated in any particular brain structure. Although current flow modeling is useful means of informing tES target optimization, few studies have validated tES FEM models against experimental measurements. MREIT-CDI can be used to recover magnetic flux density caused by current flow in a conducting object. This dissertation reports the first comparisons between experimental data from in-vivo human MREIT-CDI during tES and results from tES FEM using head models derived from the same subjects. First, tES FEM pipelines were verified by confirming FEM predictions agreed with analytic results at the mesh sizes used and that a sufficiently large head extent was modeled to approximate results on human subjects. Second, models were used to predict magnetic flux density, and predicted and MREIT-CDI results were compared to validate and refine modeling outcomes. Finally, models were used to investigate inter-subject variability and biological side effects reported by tES subjects. The study demonstrated good agreements in patterns between magnetic flux distributions from experimental and simulation data. However, the discrepancy in scales between simulation and experimental data suggested that tissue conductivities typically used in tES FEM might be incorrect, and thus performing in-vivo conductivity measurements in humans is desirable. Overall, in-vivo MREIT-CDI in human heads has been established as a validation tool for tES predictions and to study the underlying mechanisms of tES therapies.Dissertation/ThesisDoctoral Dissertation Biomedical Engineering 201
    • …
    corecore