25,281 research outputs found

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    One-shot learning of object categories

    Get PDF
    Learning visual models of object categories notoriously requires hundreds or thousands of training examples. We show that it is possible to learn much information about a category from just one, or a handful, of images. The key insight is that, rather than learning from scratch, one can take advantage of knowledge coming from previously learned categories, no matter how different these categories might be. We explore a Bayesian implementation of this idea. Object categories are represented by probabilistic models. Prior knowledge is represented as a probability density function on the parameters of these models. The posterior model for an object category is obtained by updating the prior in the light of one or more observations. We test a simple implementation of our algorithm on a database of 101 diverse object categories. We compare category models learned by an implementation of our Bayesian approach to models learned from by maximum likelihood (ML) and maximum a posteriori (MAP) methods. We find that on a database of more than 100 categories, the Bayesian approach produces informative models when the number of training examples is too small for other methods to operate successfully

    Teaching Compositionality to CNNs

    Full text link
    Convolutional neural networks (CNNs) have shown great success in computer vision, approaching human-level performance when trained for specific tasks via application-specific loss functions. In this paper, we propose a method for augmenting and training CNNs so that their learned features are compositional. It encourages networks to form representations that disentangle objects from their surroundings and from each other, thereby promoting better generalization. Our method is agnostic to the specific details of the underlying CNN to which it is applied and can in principle be used with any CNN. As we show in our experiments, the learned representations lead to feature activations that are more localized and improve performance over non-compositional baselines in object recognition tasks.Comment: Preprint appearing in CVPR 201

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Do-It-Yourself Single Camera 3D Pointer Input Device

    Full text link
    We present a new algorithm for single camera 3D reconstruction, or 3D input for human-computer interfaces, based on precise tracking of an elongated object, such as a pen, having a pattern of colored bands. To configure the system, the user provides no more than one labelled image of a handmade pointer, measurements of its colored bands, and the camera's pinhole projection matrix. Other systems are of much higher cost and complexity, requiring combinations of multiple cameras, stereocameras, and pointers with sensors and lights. Instead of relying on information from multiple devices, we examine our single view more closely, integrating geometric and appearance constraints to robustly track the pointer in the presence of occlusion and distractor objects. By probing objects of known geometry with the pointer, we demonstrate acceptable accuracy of 3D localization.Comment: 8 pages, 6 figures, 2018 15th Conference on Computer and Robot Visio
    corecore