40,751 research outputs found

    Urban background noise mapping: the multiple-reflection correction term

    Get PDF
    Mapping of road traffic noise in urban areas according to standardized engineering calculation methods systematically results in an underestimation of noise levels at areas shielded from direct exposure to noise, such as inner yards. In most engineering methods, road traffic lanes are represented by point sources and noise levels are computed utilizing point-to-point propagation paths. For a better prediction of noise levels in shielded urban areas, an extension of engineering methods by an attenuation term Acan has been proposed, including multiple reflections of the urban environment both in the source and in the receiver area. The present work has two main contributions for the ease of computing A(can). Firstly, it is shown by numerical calculations that A(can) may be divided into independent source and receiver environment terms, A(s) and A(r). Based on an equivalent free field analogy, the distance dependence of these terms may moreover be expressed analytically. Secondly, an analytical expression is proposed to compute A(s) and A(r) for 3D configurations from using 2D configurations only. The expression includes dependence of the street width-to-height ratio, the difference in building heights and the percentage of facade openings in the horizontal plane. For the expression to be valid, the source should be separated from the receiver environment by at least four times the street width

    On the improved point-to-point calculations for noise mapping in shielded urban areas

    Get PDF
    Noise mapping of urban areas according to standardized engineering calculation methods systematically results in an underestimation of noise levels at areas shielded from direct exposure to noise, such as inner yards. In these methods, road traffic lanes are represented by point sources and noise levels are computed utilizing point-to-point propagation paths. For a better prediction of noise levels in shielded urban areas, the attenuation terms describing these propagation paths are extended by terms including geometrical aspects of the urban environment both in the source and in the receiver area. In the present work, it has been studied to what extent these terms may be treated as being independent of the source-receiver distance. Also, the validity of treating the propagation path in a 2D plane rather than in 3D is investigated. Results obtained from a wave-based acoustic propagation model have been used for this assessment

    Fingerprint Identification Using Noise in the Horizontal-to-Vertical Spectral Ratio: Retrieving the Impedance Contrast Structure for the Almaty Basin (Kazakhstan)

    Get PDF
    Detailed knowledge of the 3D basin structure underlying urban areas is of major importance for improving the assessment of seismic hazard and risk. However, mapping the major features of the shallow geological layers becomes expensive where large areas need to be covered. In this study, we propose an innovative tool, based mainly on single station noise recordings and the horizontal-to-vertical spectral ratio (H/V), to identify and locate the depth of major impedance contrasts. The method is based on an identification of so-called fingerprints of the major impedance discontinuities and their migration to depth by means of an analytical procedure. The method is applied to seismic noise recordings collected in the city of Almaty (Kazakhstan). The estimated impedance contrasts vs. depth profiles are interpolated in order to derive a three-dimensional (3D) model, which after calibration with some available boreholes data allows the major tectonic features in the subsurface to be identified

    Fingerprint Identification Using Noise in the Horizontal-to-Vertical Spectral Ratio: Retrieving the Impedance Contrast Structure for the Almaty Basin (Kazakhstan)

    Get PDF
    Detailed knowledge of the 3D basin structure underlying urban areas is of major importance for improving the assessment of seismic hazard and risk. However, mapping the major features of the shallow geological layers becomes expensive where large areas need to be covered. In this study, we propose an innovative tool, based mainly on single station noise recordings and the horizontal-to-vertical spectral ratio (H/V), to identify and locate the depth of major impedance contrasts. The method is based on an identification of so-called fingerprints of the major impedance discontinuities and their migration to depth by means of an analytical procedure. The method is applied to seismic noise recordings collected in the city of Almaty (Kazakhstan). The estimated impedance contrasts vs. depth profiles are interpolated in order to derive a three-dimensional (3D) model, which after calibration with some available boreholes data allows the major tectonic features in the subsurface to be identified

    Urban background noise mapping: The multiple-reflection correction term

    Get PDF
    Mapping of road traffic noise in urban areas according to standardized engineering calculation methods systematically results in an underestimation of noise levels at areas shielded from direct exposure to noise, such as inner yards. In most engineering methods, road traffic lanes are represented by point sources and noise levels are computed utilizing point-to-point propagation paths. For a better prediction of noise levels in shielded urban areas, an extension of engineering methods by an attenuation term Acan has been proposed, including multiple reflections of the urban environment both in the source and in the receiver area. The present work has two main contributions for the ease of computing Acan. Firstly, it is shown by numerical calculations that Acan may be divided into independent source and receiver environment terms, As and Ar. Based on an equivalent free field analogy, the distance dependence of these terms may moreover be expressed analytically. Secondly, an analytical expression is proposed to compute As and Ar for 3D configurations from using 2D configurations only. The expression includes dependence of the street width-to-height ratio, the difference in building heights and the percentage of facade openings in the horizontal plane. For the expression to be valid, the source should be separated from the receiver environment by at least four times the street width. © S. Hirzel Verlag EAA

    Uncertainty Representation and Quantification of 3d Building Models

    Get PDF
    The quality of environmental perception is of great interest for localization tasks in autonomous systems. Maps, generated from the sensed information, are often used as additional spatial references in these applications. The quantification of the map uncertainties gives an insight into how reliable and complete the map is, avoiding the potential systematic deviation in pose estimation. Mapping 3D buildings in urban areas using Light detection and ranging (LiDAR) point clouds is a challenging task as it is often subject to uncertain error sources in the real world such as sensor noise and occlusions, which should be well represented in the 3D models for the downstream localization tasks. In this paper, we propose a method to model 3D building façades in complex urban scenes with uncertainty quantification, where the uncertainties of windows and façades are indicated in a probabilistic fashion. The potential locations of the missing objects (here: windows) are inferred by the available data and layout patterns with the Monte Carlo (MC) sampling approach. The proposed 3D building model and uncertainty measures are evaluated using the real-world LiDAR point clouds collected by Riegl Mobile Mapping System. The experimental results show that our uncertainty representation conveys the quality information of the estimated locations and shapes for the modelled map objects

    MAMUD : contribution of HR satellite imagery to a better monitoring, modeling and understanding of urban dynamics

    Get PDF
    In this treatise the discussion of a methodology and results of semi-automatic city DSM extrac-tion from an Ikonos triplet, is introduced. Built-up areas are known as being complex for photogrammetric purposes, partly because of the steep changes in elevation caused by buildings and urban features. To make DSM extraction more robust and to cope with the specific problems of height displacement, concealed areas and shadow, a multi-image based approach is followed. For the VHR tri-stereoscopic study an area extending from the centre of Istanbul to the urban fringe is chosen. Research will concentrate, in first phase on the development of methods to optimize the extraction of photogrammetric products from the bundled Ikonos triplet. Optimal methods need to be found to improve the radiometry and geometry of the imagery, to improve the semi-automatically derivation of DSM’s and to improve the postprocessing of the products. Secondly we will also investigate the possibilities of creating stereo models out of images from the same sensor taken on a different date, e.g. one image of the stereo pair combined with the third image. Finally the photogrammetric products derived from the Ikonos stereo pair as well as the products created out of the triplet and the constructed stereo models will be investigated by comparison with a 3D reference. This evaluation should show the increase of accuracy when multi-imagery is used instead of stereo pairs

    Robust Dense Mapping for Large-Scale Dynamic Environments

    Full text link
    We present a stereo-based dense mapping algorithm for large-scale dynamic urban environments. In contrast to other existing methods, we simultaneously reconstruct the static background, the moving objects, and the potentially moving but currently stationary objects separately, which is desirable for high-level mobile robotic tasks such as path planning in crowded environments. We use both instance-aware semantic segmentation and sparse scene flow to classify objects as either background, moving, or potentially moving, thereby ensuring that the system is able to model objects with the potential to transition from static to dynamic, such as parked cars. Given camera poses estimated from visual odometry, both the background and the (potentially) moving objects are reconstructed separately by fusing the depth maps computed from the stereo input. In addition to visual odometry, sparse scene flow is also used to estimate the 3D motions of the detected moving objects, in order to reconstruct them accurately. A map pruning technique is further developed to improve reconstruction accuracy and reduce memory consumption, leading to increased scalability. We evaluate our system thoroughly on the well-known KITTI dataset. Our system is capable of running on a PC at approximately 2.5Hz, with the primary bottleneck being the instance-aware semantic segmentation, which is a limitation we hope to address in future work. The source code is available from the project website (http://andreibarsan.github.io/dynslam).Comment: Presented at IEEE International Conference on Robotics and Automation (ICRA), 201

    Multi-dimensional modelling for the national mapping agency: a discussion of initial ideas, considerations, and challenges

    Get PDF
    The Ordnance Survey, the National Mapping Agency (NMA) for Great Britain, has recently begun to research the possible extension of its 2-dimensional geographic information into a multi-dimensional environment. Such a move creates a number of data creation and storage issues which the NMA must consider. Many of these issues are highly relevant to all NMA’s and their customers alike, and are presented and explored here. This paper offers a discussion of initial considerations which NMA’s face in the creation of multi-dimensional datasets. Such issues include assessing which objects should be mapped in 3 dimensions by a National Mapping Agency, what should be sensibly represented dynamically, and whether resolution of multi-dimensional models should change over space. This paper also offers some preliminary suggestions for the optimal creation method for any future enhanced national height model for the Ordnance Survey. This discussion includes examples of problem areas and issues in both the extraction of 3-D data and in the topological reconstruction of such. 3-D feature extraction is not a new problem. However, the degree of automation which may be achieved and the suitability of current techniques for NMA’s remains a largely unchartered research area, which this research aims to tackle. The issues presented in this paper require immediate research, and if solved adequately would mark a cartographic paradigm shift in the communication of geographic information – and could signify the beginning of the way in which NMA’s both present and interact with their customers in the future
    • …
    corecore