23 research outputs found

    Spatial Acoustic Vector Based Sound Field Reproduction

    Get PDF
    Spatial sound field reproduction aims to recreate an immersive sound field over a spatial region. The existing sound pressure based approaches to spatial sound field reproduction focus on the accurate approximation of original sound pressure over space, which ignores the perceptual accuracy of the reproduced sound field. The acoustic vectors of particle velocity and sound intensity appear to be closely linked with human perception of sound localization in literature. Therefore, in this thesis, we explore the spatial distributions of the acoustic vectors, and seek to develop algorithms to perceptually reproduce the original sound field over a continuous spatial region based on the vectors. A theory of spatial acoustic vectors is first developed, where the spatial distributions of particle velocity and sound intensity are derived from sound pressure. To extract the desired sound pressure from a mixed sound field environment, a 3D sound field separation technique is also formulated. Based on this theory, a series of reproduction techniques are proposed to improve the perceptual performance. The outcomes resulting from this theory are: (i) derivation of a particle velocity assisted 3D sound field reproduction technique which allows for non-uniform loudspeaker geometry with a limited number of loudspeakers, (ii) design of particle velocity based mixed-source sound field translation technique for binaural reproduction that can provide sound field translation with good perceptual experience over a large space, (iii) derivation of an intensity matching technique that can reproduce the desired sound field in a spherical region by controlling the sound intensity on the surface of the region, and (iv) two intensity based multizone sound field reproduction algorithms that can reproduce the desired sound field over multiple spatial zones. Finally, these techniques are evaluated by comparing to the conventional approaches through numerical simulations and real-world experiments

    Spatial Multizone Soundfield Reproduction Design

    No full text
    It is desirable for people sharing a physical space to access different multimedia information streams simultaneously. For a good user experience, the interference of the different streams should be held to a minimum. This is straightforward for the video component but currently difficult for the audio sound component. Spatial multizone soundfield reproduction, which aims to provide an individual sound environment to each of a set of listeners without the use of physical isolation or headphones, has drawn significant attention of researchers in recent years. The realization of multizone soundfield reproduction is a conceptually challenging problem as currently most of the soundfield reproduction techniques concentrate on a single zone. This thesis considers the theory and design of a multizone soundfield reproduction system using arrays of loudspeakers in given complex environments. We first introduce a novel method for spatial multizone soundfield reproduction based on describing the desired multizone soundfield as an orthogonal expansion of formulated basis functions over the desired reproduction region. This provides the theoretical basis of both 2-D (height invariant) and 3-D soundfield reproduction for this work. We then extend the reproduction of the multizone soundfield over the desired region to reverberant environments, which is based on the identification of the acoustic transfer function (ATF) from the loudspeaker over the desired reproduction region using sparse methods. The simulation results confirm that the method leads to a significantly reduced number of required microphones for an accurate multizone sound reproduction compared with the state of the art, while it also facilitates the reproduction over a wide frequency range. In addition, we focus on the improvements of the proposed multizone reproduction system with regard to practical implementation. The so-called 2.5D multizone oundfield reproduction is considered to accurately reproduce the desired multizone soundfield over a selected 2-D plane at the height approximately level with the listener’s ears using a single array of loudspeakers with 3-D reverberant settings. Then, we propose an adaptive reverberation cancelation method for the multizone soundfield reproduction within the desired region and simplify the prior soundfield measurement process. Simulation results suggest that the proposed method provides a faster convergence rate than the comparative approaches under the same hardware provision. Finally, we conduct the real-world implementation based on the proposed theoretical work. The experimental results show that we can achieve a very noticeable acoustic energy contrast between the signals recorded in the bright zone and the quiet zone, especially for the system implementation with reverberation equalization

    Three-dimensional wave-domain acoustic contrast control using a circular loudspeaker array

    Full text link
    © 2019 Acoustical Society of America. This paper proposes a three-dimensional wave-domain acoustic contrast control method to reproduce a multizone sound field using a circular loudspeaker array. In this method, sound field analysis is based on spherical harmonic decomposition, and the loudspeaker weights are obtained by maximizing the acoustic energy contrast between the predefined bright zone and dark zone. Simulation results show that the proposed method provides good multizone separation performance over a large spatial region and requires lower-order spherical harmonics, resulting in a much lower number of microphones required to measure the acoustic transfer functions

    3D Multizone Soundfield Reproduction in a Reverberant Environment Using Intensity Matching Method

    Get PDF
    Sound intensity is a good predictor of human perception of sound location, which can be controlled to provide impressive direction perception to humans in soundfield reproduction systems, especially when the loudspeakers are non-uniformly distributed. However, the previous works in this field are all constrained to a single sweet spot/spatial zone. We address this challenge and propose a multizone reproduction method for 3D soundfield in a reverberant room based on intensity matching. We develop spatial sound intensity expressions in a reververant room using spherical harmonic decomposition, and build a cost function to optimize sound intensity within multiple spatial zones. Finally, simulation results showing the performance are presented.This work is supported by ARC Linkage Grant No. LP160100379 and the China Scholarship Council with the Australian National Universit

    Surround by Sound: A Review of Spatial Audio Recording and Reproduction

    Get PDF
    In this article, a systematic overview of various recording and reproduction techniques for spatial audio is presented. While binaural recording and rendering is designed to resemble the human two-ear auditory system and reproduce sounds specifically for a listener’s two ears, soundfield recording and reproduction using a large number of microphones and loudspeakers replicate an acoustic scene within a region. These two fundamentally different types of techniques are discussed in the paper. A recent popular area, multi-zone reproduction, is also briefly reviewed in the paper. The paper is concluded with a discussion of the current state of the field and open problemsThe authors acknowledge National Natural Science Foundation of China (NSFC) No. 61671380 and Australian Research Council Discovery Scheme DE 150100363

    An approach to generating two zones of silence with application to personal sound systems

    No full text
    An application of current interest in sound reproduction systems is the creation of multizone sound fields which produce multiple independent sound fields for multiple listeners. The challenge in producing such sound fields is the avoidance of interference between sound zones, which is dependent on the geometry of the zone and the direction of arrival of the desired sound fields. This paper provides a theoretical basis for the generation of two zones based on the creation of sound fields with nulls and the positioning of those nulls at arbitrary positions. The nulls are created by suppressing low-order mode terms in the sound field expansion. Simulations are presented for the two-dimensional case which shows that suppression of interference is possible across a broad frequency audio range

    2.5D multizone reproduction using weighted mode matching: Performance analysis and experimental validation

    Get PDF
    Mode-matching based multizone reproduction has been mainly focused on a purely two-dimensional (2D) theory, where infinite-long 2D secondary sources are assumed for 2D multizone reproduction. Its extension to the three-dimensional (3D) case requires more secondary sources and a higher computational complexity. This work investigates a more practical setup to use 3D sound sources as secondary sources for multizone reproduction in a 2D horizontal plane, i.e., 2.5D multizone reproduction. A weighted mode-matching approach is proposed to solve the dimensionality mismatch between the 2D desired sound field and 3D reproduced sound field. The weighting is based on an integral of Bessel-spherical harmonic modes over the entire control region. A detailed analysis of the weighting function is provided to show that the proposed method controls all the reproduction modes present on the 2D plane to minimize the reproduction error. The method is validated in both simulation-based and hardware-based experiments. The results demonstrate that in comparison with the conventional sectorial mode-matching method, the proposed approach can achieve more accurate reproduction over a wide frequency range and a large control region. 2020 Acoustical Society of America.This work was supported by the National Natural Science Foundation of China (NSFC) funding scheme under Project No. 61671380

    Analysis and control of multi-zone sound field reproduction using modal-domain approach

    Get PDF
    Multi-zone sound control aims to reproduce multiple sound fields independently and simultaneously over different spatial regions within the same space. This paper investigates the multi-zone sound control problem formulated in the modal domain using the Lagrange cost function and provides a modal-domain analysis of the problem. The Lagrange cost function is formulated to represent a quadratic objective of reproducing a desired sound field within the bright zone and with constraints on sound energy in the dark zone and global region. A fundamental problem in multi-zone reproduction is interzone sound interference, where based on the geometry of the sound zones and the desired sound field within the bright zone the achievable reproduction performance is limited. The modal-domain Lagrangian solution demonstrates the intrinsic ill-posedness of the problem, based on which a parameter, the coefficient of realisability, is developed to evaluate the reproduction limitation. The proposed reproduction method is based on controlling the interference between sound zones and sound leakage outside the sound zones, resulting in a suitable compromise between good bright zone performance and satisfactory dark zone performance. The performance of the proposed design is demonstrated through numerical simulations of two-zone reproduction in free-field and in reverberant environments

    A Measure Based on Beamforming Power for Evaluation of Sound Field Reproduction Performance

    Get PDF
    This paper proposes a measure to evaluate sound field reproduction systems with an array of loudspeakers. The spatially-averaged squared error of the sound pressure between the desired and the reproduced field, namely the spatial error, has been widely used, which has considerable problems in two conditions. First, in non-anechoic conditions, room reflections substantially deteriorate the spatial error, although these room reflections affect human localization to a lesser degree. Second, for 2.5-dimensional reproduction of spherical waves, the spatial error increases consistently due to the difference in the amplitude decay rate, whereas the degradation of human localization performance is limited. The measure proposed in this study is based on the beamforming powers of the desired and the reproduced fields. Simulation and experimental results show that the proposed measure is less sensitive to room reflections and the amplitude decay than the spatial error, which is likely to agree better with the human perception of source localization
    corecore