318 research outputs found

    Enhancing the measurement of clinical outcomes using Microsoft Kinect

    Get PDF
    There is a growing body of applications leveraging Microsoft Kinect and the associated Windows Software Development Kit in health and wellness. In particular, this platform has been valuable in developing interactive solutions for rehabilitation including creating more engaging exercise regimens and ensuring that exercises are performed correctly for optimal outcomes. Clinical trials rely upon robust and validated methodologies to measure health status and to detect treatment-related changes over time to enable the efficacy and safety of new drug treatments to be assessed and measured. In many therapeutic areas, traditional outcome measures rely on subjective investigator and patient ratings. Subjective ratings are not always sensitive to detecting small improvements, are subject to inter- and intra-rater variability and limited in their ability to record detailed or subtle aspects of movement and mobility. For these reasons, objective measurements may provide greater sensitivity to detect treatment-related changes where they exist. In this review paper, we explore the use of the Kinect platform to develop low-cost approaches to objectively measure aspects of movement. We consider published applications that measure aspects of gait and balance, upper extremity movement, chest wall motion and facial analysis. In each case, we explore the utility of the approach for clinical trials, and the precision and accuracy of estimates derived from the Kinect output. We conclude that the use of games platforms such as Microsoft Kinect to measure clinical outcomes offer a versatile, easy to use and low-cost approach that may add significant value and utility to clinical drug development, in particular in replacing conventional subjective measures and providing richer information about movement than previously possible in large scale clinical trials, especially in the measurement of gross spatial movements. Regulatory acceptance of clinical outcomes collected in this way will be subject to comprehensive assessment of validity and clinical relevance, and this will require good quality peer-reviewed publications of scientific evidence

    Choice of an outcome measure for Virtual Reality motor training in acute neurorehabilitation.

    Get PDF
    Background: the occurrence of new stroke cases is estimated at 15 million worldwide every year representing the second leading cause of death worldwide during a given ten year period. patients with significant arm paresis recover useful function, so it is crucial to find new 75% of stroke survivors suffer from upper limb paresis: studies suggest that only 50% of Methods and Results: We first made an analysis of movements offered by the MindMotionPRO techniques of rehabilitation and high-performance outcome measurements tools. Virtual Reality (VR) represents a valuable technology for training the cognitive and motor functions of stroke patients. Successful rehabilitation requires a valid and reliable assessment methodology for tracking the therapy progress. carried out in order to correlate the selected tools to this platform. Among the investigated VR motor rehabilitation platform. Then a literature review of outcome measurement tools was scale of the movements trained by the VR platform. motricity and motor function outcome measures, we found that the Fugl-Meyer scale (FM) is the most appropriate, evaluation by its tested movements and its good validity, sensitivity, responsiveness, reliability and its good correlation with ADL in accordance with MindMotionPRO motor rehabilitation exercises. Discussion: The movement analysis of the VR platform is well suited to neurorehabilitation in the acute phase. After a literature review, the FM scale was chosen as an adequate evaluation Conclusions: We recommend using the FM scale to evaluate the outcome of training with this VR platform. Further studies are planned to show the effectiveness of this training also in the post-acute phase

    Modeling & Analysis of Design Parameters for Portable Hand Orthoses to Assist Upper Motor Neuron Syndrome Impairments and Prototype Design

    Get PDF
    Wearable assistive robotics have the potential to address an unmet medical need of reducing disability in individuals with chronic hand impairments due to neurological trauma. Despite myriad prior works, few patients have seen the benefits of such devices. Following application experience with tendon-actuated soft robotic gloves and a collaborator\u27s orthosis with novel flat-spring actuators, we identified two common assumptions regarding hand orthosis design. The first was reliance on incomplete studies of grasping forces during activities of daily living as a basis for design criteria, leading to poor optimization. The second was a neglect of increases in muscle tone following neurological trauma, rendering most devices non-applicable to a large subset of the population. To address these gaps, we measured joint torques during activities of daily living with able-bodied subjects using dexterity representative of orthosis-aided motion. Next, we measured assistive torques needed to extend the fingers of individuals with increased flexor tone following TBI. Finally, we applied this knowledge to design a cable actuated orthosis for assisting finger extension, providing a basis for future work focused on an under-represented subgroup of patients

    Body ownership illusion through virtual reality as modulator variable for limbs rehabilitation after stroke: a systematic review

    Get PDF
    Stroke is the leading cause of motor impairments and generates distortion of body representation. Hence, stroke can modulate the sense of embodiment, namely the feeling of being inside the body (ownership), in the place where the body is located (location), and moving the body according to its own intentions (agency). A growing number of studies have adopted virtual reality (VR) to train motor abilities. However, the impact of the body illusion on the rehabilitation outcome is not fully understood. The present systematic review investigates the modulating role of the body illusion elicited by VR on motor rehabilitation in post-stroke patients after embodying a virtual avatar. The research was led in the main databases—PubMed, Scopus, PsychINFO, and Web of Science—and four studies matched the inclusion criteria (e.g., to have a sample of adult post-stroke patients, to use VR as an instrument for motor rehabilitation, to adopt the paradigm of the body illusion as a modulator for motor rehabilitation, to test the sense of body illusion outcome). Research outcomes demonstrated that two studies adopted the immersive and two the non-immersive embodied VR; three studies focused on the upper limb, and one on lower limb rehabilitation. Two studies compare VR training with traditional therapy, and two are pilot studies with only one experimental group. The studies demonstrated the feasibility of the body illusion as an accelerator for motor rehabilitation compared to the non-embodied condition, and as a positive correlator of the rehabilitation outcome. The finding should be taken with caution due to the limited studies included; however, they are encouraging to justify further research efforts in this area
    corecore