835 research outputs found

    GPUMLib: Deep Learning SOM Library for Surface Reconstruction

    Get PDF
    The evolution of 3D scanning devices and innovation in computer processing power and storage capacity has sparked the revolution of producing big point-cloud datasets. This phenomenon has becoming an integral part of the sophisticated building design process especially in the era of 4th Industrial Revolution. The big point-cloud datasets have caused complexity in handling surface reconstruction and visualization since existing algorithms are not so readily available. In this context, the surface reconstruction intelligent algorithms need to be revolutionized to deal with big point-cloud datasets in tandem with the advancement of hardware processing power and storage capacity. In this study, we propose GPUMLib – deep learning library for self-organizing map (SOM-DLLib) to solve problems involving big point-cloud datasets from 3D scanning devices. The SOM-DLLib consists of multiple layers for reducing and optimizing those big point cloud datasets. The findings show the final objects are successfully reconstructed with optimized neighborhood representation and the performance becomes better as the size of point clouds increases

    Noise2Filter: fast, self-supervised learning and real-time reconstruction for 3D Computed Tomography

    Get PDF
    At X-ray beamlines of synchrotron light sources, the achievable time-resolution for 3D tomographic imaging of the interior of an object has been reduced to a fraction of a second, enabling rapidly changing structures to be examined. The associated data acquisition rates require sizable computational resources for reconstruction. Therefore, full 3D reconstruction of the object is usually performed after the scan has completed. Quasi-3D reconstruction -- where several interactive 2D slices are computed instead of a 3D volume -- has been shown to be significantly more efficient, and can enable the real-time reconstruction and visualization of the interior. However, quasi-3D reconstruction relies on filtered backprojection type algorithms, which are typically sensitive to measurement noise. To overcome this issue, we propose Noise2Filter, a learned filter method that can be trained using only the measured data, and does not require any additional training data. This method combines quasi-3D reconstruction, learned filters, and self-supervised learning to derive a tomographic reconstruction method that can be trained in under a minute and evaluated in real-time. We show limited loss of accuracy compared to training with additional training data, and improved accuracy compared to standard filter-based methods

    Real-Time Magnetic Resonance Imaging

    Get PDF
    Real‐time magnetic resonance imaging (RT‐MRI) allows for imaging dynamic processes as they occur, without relying on any repetition or synchronization. This is made possible by modern MRI technology such as fast‐switching gradients and parallel imaging. It is compatible with many (but not all) MRI sequences, including spoiled gradient echo, balanced steady‐state free precession, and single‐shot rapid acquisition with relaxation enhancement. RT‐MRI has earned an important role in both diagnostic imaging and image guidance of invasive procedures. Its unique diagnostic value is prominent in areas of the body that undergo substantial and often irregular motion, such as the heart, gastrointestinal system, upper airway vocal tract, and joints. Its value in interventional procedure guidance is prominent for procedures that require multiple forms of soft‐tissue contrast, as well as flow information. In this review, we discuss the history of RT‐MRI, fundamental tradeoffs, enabling technology, established applications, and current trends
    corecore