3,438 research outputs found

    High yield fabrication process for 3D-stacked ultra-thin chip packages using photo-definable polyimide and symmetry in packages

    Get PDF
    Getting output of multiple chips within the volume of a single chip is the driving force behind development of this novel 3D integration technology, which has a broad range of industrial and medical electronic applications. This goal is achieved in a two-step approach. At first thinned dies are embedded in a polyimide interposer with a fine-pitch metal fan-out resulting Ultra-Thin Chip Packages (UTCP), next these UTCPs are stacked by lamination. Step height at the chip edge of these UTCPs is the major reason of die cracking during the lamination. This paper contains an approach to solve this issue by introduction of an additional layer of interposer which makes it flat at the chip edge and thus the whole packages is named as “Flat-UTCP”. In addition to that, randomness in non-functional package positions per panel reduces the overall yield of the whole process up to certain extent. A detailed analysis on these two issues to improve the process yield is presented in this paper. 3D-stacked memory module composed of 4 EEPROM dies was processed and tested to demonstrate this new concept for enhancing the fabrication yield

    3D-stacking of ultra-thin chips and chip packages

    Get PDF

    Ball lens embedded through-package via to enable backside coupling between silicon photonics interposer and board-level interconnects

    Get PDF
    Development of an efficient and densely integrated optical coupling interface for silicon photonics based board-level optical interconnects is one of the key challenges in the domain of 2.5D/3D electro-optic integration. Enabling high-speed on-chip electro-optic conversion and efficient optical transmission across package/board-level short-reach interconnections can help overcome the limitations of a conventional electrical I/O in terms of bandwidth density and power consumption in a high-performance computing environment. In this context, we have demonstrated a novel optical coupling interface to integrate silicon photonics with board-level optical interconnects. We show that by integrating a ball lens in a via drilled in an organic package substrate, the optical beam diffracted from a downward directionality grating on a photonics chip can be coupled to a board-level polymer multimode waveguide with a good alignment tolerance. A key result from the experiment was a 14 chip-to-package 1-dB lateral alignment tolerance for coupling into a polymer waveguide with a cross-section of 20 x 25. An in-depth analysis of loss distribution across several interfaces was done and a -3.4 dB coupling efficiency was measured between the optical interface comprising of output grating, ball lens and polymer waveguide. Furthermore, it is shown that an efficiency better than -2 dB can be achieved by tweaking few parameters in the coupling interface. The fabrication of the optical interfaces and related measurements are reported and verified with simulation results

    A review of advances in pixel detectors for experiments with high rate and radiation

    Full text link
    The Large Hadron Collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.Comment: 84 pages with 46 figures. Review article.For submission to Rep. Prog. Phy

    On Energy Efficient Computing Platforms

    Get PDF
    In accordance with the Moore's law, the increasing number of on-chip integrated transistors has enabled modern computing platforms with not only higher processing power but also more affordable prices. As a result, these platforms, including portable devices, work stations and data centres, are becoming an inevitable part of the human society. However, with the demand for portability and raising cost of power, energy efficiency has emerged to be a major concern for modern computing platforms. As the complexity of on-chip systems increases, Network-on-Chip (NoC) has been proved as an efficient communication architecture which can further improve system performances and scalability while reducing the design cost. Therefore, in this thesis, we study and propose energy optimization approaches based on NoC architecture, with special focuses on the following aspects. As the architectural trend of future computing platforms, 3D systems have many bene ts including higher integration density, smaller footprint, heterogeneous integration, etc. Moreover, 3D technology can signi cantly improve the network communication and effectively avoid long wirings, and therefore, provide higher system performance and energy efficiency. With the dynamic nature of on-chip communication in large scale NoC based systems, run-time system optimization is of crucial importance in order to achieve higher system reliability and essentially energy efficiency. In this thesis, we propose an agent based system design approach where agents are on-chip components which monitor and control system parameters such as supply voltage, operating frequency, etc. With this approach, we have analysed the implementation alternatives for dynamic voltage and frequency scaling and power gating techniques at different granularity, which reduce both dynamic and leakage energy consumption. Topologies, being one of the key factors for NoCs, are also explored for energy saving purpose. A Honeycomb NoC architecture is proposed in this thesis with turn-model based deadlock-free routing algorithms. Our analysis and simulation based evaluation show that Honeycomb NoCs outperform their Mesh based counterparts in terms of network cost, system performance as well as energy efficiency.Siirretty Doriast

    MEMS Technologies Enabling the Future Wafer Test Systems

    Get PDF
    As the form factor of microelectronic systems and chips are continuing to shrink, the demand for increased connectivity and functionality shows an unabated rising trend. This is driving the evolution of technologies that requires 3D approaches for the integration of devices and system design. The 3D technology allows higher packing densities as well as shorter chip-to-chip interconnects. Micro-bump technology with through-silicon vias (TSVs) and advances in flip chip technology enable the development and manufacturing of devices at bump pitch of 14 μm or less. Silicon carrier or interposer enabling 3D chip stacking between the chip and the carrier used in packaging may also offer probing solutions by providing a bonding platform or intermediate board for a substrate or a component probe card assembly. Standard vertical probing technologies use microfabrication technologies for probes, templates and substrate-ceramic packages. Fine pitches, below 50 μm bump pitch, pose enormous challenges and microelectromechanical system (MEMS) processes are finding applications in producing springs, probes, carrier or substrate structures. In this chapter, we explore the application of MEMS-based technologies on manufacturing of advanced probe cards for probing dies with various new pad or bump structures

    Self-Aligned 3D Chip Integration Technology and Through-Silicon Serial Data Transmission

    Get PDF
    The emerging three-dimensional (3D) integration technology is expected to lead to an industry paradigm shift due to its tremendous benefits. Intense research activities are going on about technology, simulation, design, and product prototypes. This thesis work aims at fabricating through-silicon vias (TSVs) on diced processor chips, and later bonding them into a 3D-stacked chip. How to handle and process delicate processor chips with high alignment precision is a key issue. The TSV process to be developed also needs to adapt to this constraint. Four TSV processes have been studied. Among them, the ring-trench TSV process demonstrates the feasibility of fabricating TSVs with the prevailing dimensions, and the whole-through TSV process achieves the first dummy chip post-processed with TSVs in EPFL although the dimension is rather large to keep a reasonable aspect ratio (AR). Four self-alignment (SA) techniques have been investigated, among which the gravitational SA and the hydrophobic SA are found to be quite promising. Using gravitational SA, we come to the conclusion that cavities in silicon carrier wafer with a profile angle of 60° can align the chips with less than 20 µm inaccuracies. The alignment precision can be improved after adopting more advanced dicing tools instead of using the traditional dicing saws and larger cavity profile angle. Such inaccuracy will be sufficient to align the relatively large TSVs for general products such as 3D image sensors. By fabricating bottom TSVs in the carrier wafer, a 3D silicon interposer idea has been proposed to stack another chip, e.g. a processor chip, on the other side of the carrier wafer. But stacking microprocessor chips fabricated with TSVs will require higher alignment precision. A hydrophobic SA technique using the surface tension force generated by the water-to-air interfaces around the pads can greatly reduce the alignment inaccuracy to less than 1 µm. This low-cost and high throughput SA procedure is processed in air, fully-compatible with current fabrication technologies, and highly stable and repeatable. We present a theoretical meniscus model to predict SA results and to provide the design rules. This technique is quite promising for advanced 3D applications involving logic and heterogeneous stacking. As TSVs' dimensions in the chip-level 3D integration are constrained by the chip-level processes, such as bonding, the smallest TSVs might still be about 5 µm. Thus, the area occupied by the TSVs cannot be neglected. Fortunately, TSVs can withstand very high bandwidths, meaning that data can be serialized and transmitted using less numbers of TSVs. With 20 µm TSVs, the 2-Gb/s 8:1 serial link implemented saves 75% of the area of its 8-bit parallel counterpart. The quasi-serial link proposed can effectively balance the inter-layer bandwidth and the serial links' area consumption. The area model of the serial or quasi-serial links working under higher frequencies provides some guidelines to choose the proper serial link design, and it also predicts that when TSV diameter shrinks to 5 µm, it will be difficult to keep this area benefit if without some novel circuit design techniques. As the serial links can be implemented with less area, the bandwidth per unit area is increased. Two scenarios are studied, single-port memory access and multi-port memory access. The expanded inter-layer bandwidth by serialization does not improve the system performance because of the bus-bottleneck problem. In the latter scenario, the inter-layer ultra-wide bandwidth can be exploited as each memory bank can be accessed randomly through the NoC. Thus further widening the inter-layer bandwidth through serialization, the system performance will be improved
    • …
    corecore