1,377 research outputs found

    Models and estimators for markerless human motion tracking

    Get PDF
    In this work, we analyze the diferent components of a model-based motion tracking system. The system consists in: a human body model, an estimator, and a likelihood or cost function

    Single camera pose estimation using Bayesian filtering and Kinect motion priors

    Full text link
    Traditional approaches to upper body pose estimation using monocular vision rely on complex body models and a large variety of geometric constraints. We argue that this is not ideal and somewhat inelegant as it results in large processing burdens, and instead attempt to incorporate these constraints through priors obtained directly from training data. A prior distribution covering the probability of a human pose occurring is used to incorporate likely human poses. This distribution is obtained offline, by fitting a Gaussian mixture model to a large dataset of recorded human body poses, tracked using a Kinect sensor. We combine this prior information with a random walk transition model to obtain an upper body model, suitable for use within a recursive Bayesian filtering framework. Our model can be viewed as a mixture of discrete Ornstein-Uhlenbeck processes, in that states behave as random walks, but drift towards a set of typically observed poses. This model is combined with measurements of the human head and hand positions, using recursive Bayesian estimation to incorporate temporal information. Measurements are obtained using face detection and a simple skin colour hand detector, trained using the detected face. The suggested model is designed with analytical tractability in mind and we show that the pose tracking can be Rao-Blackwellised using the mixture Kalman filter, allowing for computational efficiency while still incorporating bio-mechanical properties of the upper body. In addition, the use of the proposed upper body model allows reliable three-dimensional pose estimates to be obtained indirectly for a number of joints that are often difficult to detect using traditional object recognition strategies. Comparisons with Kinect sensor results and the state of the art in 2D pose estimation highlight the efficacy of the proposed approach.Comment: 25 pages, Technical report, related to Burke and Lasenby, AMDO 2014 conference paper. Code sample: https://github.com/mgb45/SignerBodyPose Video: https://www.youtube.com/watch?v=dJMTSo7-uF

    Interacting and Annealing Particle Filters: Mathematics and a Recipe for Applications

    No full text
    Interacting and annealing are two powerful strategies that are applied in different areas of stochastic modelling and data analysis. Interacting particle systems approximate a distribution of interest by a finite number of particles where the particles interact between the time steps. In computer vision, they are commonly known as particle filters. Simulated annealing, on the other hand, is a global optimization method derived from statistical mechanics. A recent heuristic approach to fuse these two techniques for motion capturing has become known as annealed particle filter. In order to analyze these techniques, we rigorously derive in this paper two algorithms with annealing properties based on the mathematical theory of interacting particle systems. Convergence results and sufficient parameter restrictions enable us to point out limitations of the annealed particle filter. Moreover, we evaluate the impact of the parameters on the performance in various experiments, including the tracking of articulated bodies from noisy measurements. Our results provide a general guidance on suitable parameter choices for different applications

    Feature-based annealing particle filter for robust body pose estimation

    Get PDF
    This paper presents a new annealing method for particle filtering in the context of body pose estimation. The feature-based annealing is inferred from the weighting functions obtained with common image features used for the likelihood approximation. We introduce a complementary weighting function based on the foreground extraction and we balance the different measures through the annealing layers in order to improve the posterior estimate. This technique is applied to estimate the upper body pose of a subject in a realistic multi-view environment. Comparative results between the proposed method and the common annealing strategy are presented to assess the robustness of the algorithm.Postprint (published version

    Backing off: hierarchical decomposition of activity for 3D novel pose recovery

    Get PDF
    For model-based 3D human pose estimation, even simple models of the human body lead to high-dimensional state spaces. Where the class of activity is known a priori, low-dimensional activity models learned from training data make possible a thorough and efficient search for the best pose. Conversely, searching for solutions in the full state space places no restriction on the class of motion to be recovered, but is both difficult and expensive. This paper explores a potential middle ground between these approaches, using the hierarchical Gaussian process latent variable model to learn activity at different hierarchical scales within the human skeleton. We show that by training on full-body activity data then descending through the hierarchy in stages and exploring subtrees independently of one another, novel poses may be recovered. Experimental results on motion capture data and monocular video sequences demonstrate the utility of the approach, and comparisons are drawn with existing low-dimensional activity models. © 2009. The copyright of this document resides with its authors

    Backing off: hierarchical decomposition of activity for 3D novel pose recovery

    Get PDF
    For model-based 3D human pose estimation, even simple models of the human body lead to high-dimensional state spaces. Where the class of activity is known a priori, low-dimensional activity models learned from training data make possible a thorough and efficient search for the best pose. Conversely, searching for solutions in the full state space places no restriction on the class of motion to be recovered, but is both difficult and expensive. This paper explores a potential middle ground between these approaches, using the hierarchical Gaussian process latent variable model to learn activity at different hierarchical scales within the human skeleton. We show that by training on full-body activity data then descending through the hierarchy in stages and exploring subtrees independently of one another, novel poses may be recovered. Experimental results on motion capture data and monocular video sequences demonstrate the utility of the approach, and comparisons are drawn with existing low-dimensional activity models. © 2009. The copyright of this document resides with its authors
    • …
    corecore