621 research outputs found

    On the Feasibility of Interoperable Schemes in Hand Biometrics

    Get PDF
    Personal recognition through hand-based biometrics has attracted the interest of many researchers in the last twenty years. A significant number of proposals based on different procedures and acquisition devices have been published in the literature. However, comparisons between devices and their interoperability have not been thoroughly studied. This paper tries to fill this gap by proposing procedures to improve the interoperability among different hand biometric schemes. The experiments were conducted on a database made up of 8,320 hand images acquired from six different hand biometric schemes, including a flat scanner, webcams at different wavelengths, high quality cameras, and contactless devices. Acquisitions on both sides of the hand were included. Our experiment includes four feature extraction methods which determine the best performance among the different scenarios for two of the most popular hand biometrics: hand shape and palm print. We propose smoothing techniques at the image and feature levels to reduce interdevice variability. Results suggest that comparative hand shape offers better performance in terms of interoperability than palm prints, but palm prints can be more effective when using similar sensors

    Webcam Configurations for Ground Texture Visual Servo

    Get PDF
    Singapor

    Estimating snow cover from publicly available images

    Get PDF
    In this paper we study the problem of estimating snow cover in mountainous regions, that is, the spatial extent of the earth surface covered by snow. We argue that publicly available visual content, in the form of user generated photographs and image feeds from outdoor webcams, can both be leveraged as additional measurement sources, complementing existing ground, satellite and airborne sensor data. To this end, we describe two content acquisition and processing pipelines that are tailored to such sources, addressing the specific challenges posed by each of them, e.g., identifying the mountain peaks, filtering out images taken in bad weather conditions, handling varying illumination conditions. The final outcome is summarized in a snow cover index, which indicates for a specific mountain and day of the year, the fraction of visible area covered by snow, possibly at different elevations. We created a manually labelled dataset to assess the accuracy of the image snow covered area estimation, achieving 90.0% precision at 91.1% recall. In addition, we show that seasonal trends related to air temperature are captured by the snow cover index.Comment: submitted to IEEE Transactions on Multimedi

    Semantic Visual Localization

    Full text link
    Robust visual localization under a wide range of viewing conditions is a fundamental problem in computer vision. Handling the difficult cases of this problem is not only very challenging but also of high practical relevance, e.g., in the context of life-long localization for augmented reality or autonomous robots. In this paper, we propose a novel approach based on a joint 3D geometric and semantic understanding of the world, enabling it to succeed under conditions where previous approaches failed. Our method leverages a novel generative model for descriptor learning, trained on semantic scene completion as an auxiliary task. The resulting 3D descriptors are robust to missing observations by encoding high-level 3D geometric and semantic information. Experiments on several challenging large-scale localization datasets demonstrate reliable localization under extreme viewpoint, illumination, and geometry changes

    A Low-cost, Wearable Opto-inertial 6 DOF Hand Pose Tracking System for VR

    Get PDF
    In this paper, a low cost, wearable six Degree of Freedom (6-DOF) hand pose tracking system is proposed for Virtual Reality applications. It is designed for use with an integrated hand exoskeleton system for kinesthetic haptic feedback. The tracking system consists of an Infrared (IR) based optical tracker with low cost mono-camera and inertial and magnetic measurement unit. Image processing is done on LabVIEW software to extract the 3-DOF position from two IR targets and Magdwick filter has been implemented on Mbed LPC1768 board to obtain orientation data. Six DOF hand tracking outputs filtered and synchronized on LabVIEW software are then sent to the Unity Virtual environment via User Datagram Protocol (UDP) stream. Experimental results show that this low cost and compact system has a comparable performance of minimal Jitter with position and orientation Root Mean Square Error (RMSE) of less than 0.2 mm and 0.15 degrees, respectively. Total Latency of the system is also less than 40 ms

    Practical Color-Based Motion Capture

    Get PDF
    Motion capture systems have been widely used for high quality content creation and virtual reality but are rarely used in consumer applications due to their price and setup cost. In this paper, we propose a motion capture system built from commodity components that can be deployed in a matter of minutes. Our approach uses one or more webcams and a color shirt to track the upper-body at interactive rates. We describe a robust color calibration system that enables our color-based tracking to work against cluttered backgrounds and under multiple illuminants. We demonstrate our system in several real-world indoor and outdoor settings
    • …
    corecore