689 research outputs found

    High-performance tsunami modelling with modern GPU technology

    Get PDF
    PhD ThesisEarthquake-induced tsunamis commonly propagate in the deep ocean as long waves and develop into sharp-fronted surges moving rapidly coastward, which may be effectively simulated by hydrodynamic models solving the nonlinear shallow water equations (SWEs). Tsunamis can cause substantial economic and human losses, which could be mitigated through early warning systems given efficient and accurate modelling. Most existing tsunami models require long simulation times for real-world applications. This thesis presents a graphics processing unit (GPU) accelerated finite volume hydrodynamic model using the compute unified device architecture (CUDA) for computationally efficient tsunami simulations. Compared with a standard PC, the model is able to reduce run-time by a factor of > 40. The validated model is used to reproduce the 2011 Japan tsunami. Two source models were tested, one based on tsunami waveform inversion and another using deep-ocean tsunameters. Vertical sea surface displacement is computed by the Okada model, assuming instantaneous sea-floor deformation. Both source models can reproduce the wave propagation at offshore and nearshore gauges, but the tsunameter-based model better simulates the first wave amplitude. Effects of grid resolutions between 450-3600 m, slope limiters, and numerical accuracy are also investigated for the simulation of the 2011 Japan tsunami. Grid resolutions of 1-2 km perform well with a proper limiter; the Sweby limiter is optimal for coarser resolutions, recovers wave peaks better than minmod, and is more numerically stable than Superbee. One hour of tsunami propagation can be predicted in 50 times on a regular low-cost PC-hosted GPU, compared to a single CPU. For 450 m resolution on a larger-memory server-hosted GPU, performance increased by ~70 times. Finally, two adaptive mesh refinement (AMR) techniques including simplified dynamic adaptive grids on CPU and a static adaptive grid on GPU are introduced to provide multi-scale simulations. Both can reduce run-time by ~3 times while maintaining acceptable accuracy. The proposed computationally-efficient tsunami model is expected to provide a new practical tool for tsunami modelling for different purposes, including real-time warning, evacuation planning, risk management and city planning

    Particle Swarm Optimization and Uncertainty Assessment in Inverse Problems

    Get PDF
    Most inverse problems in the industry (and particularly in geophysical exploration) are highly underdetermined because the number of model parameters too high to achieve accurate data predictions and because the sampling of the data space is scarce and incomplete; it is always affected by different kinds of noise. Additionally, the physics of the forward problem is a simplification of the reality. All these facts result in that the inverse problem solution is not unique; that is, there are different inverse solutions (called equivalent), compatible with the prior information that fits the observed data within similar error bounds. In the case of nonlinear inverse problems, these equivalent models are located in disconnected flat curvilinear valleys of the cost-function topography. The uncertainty analysis consists of obtaining a representation of this complex topography via different sampling methodologies. In this paper, we focus on the use of a particle swarm optimization (PSO) algorithm to sample the region of equivalence in nonlinear inverse problems. Although this methodology has a general purpose, we show its application for the uncertainty assessment of the solution of a geophysical problem concerning gravity inversion in sedimentary basins, showing that it is possible to efficiently perform this task in a sampling-while-optimizing mode. Particularly, we explain how to use and analyze the geophysical models sampled by exploratory PSO family members to infer different descriptors of nonlinear uncertainty

    Solving for Micro- and Macro- Scale Electrostatic Configurations Using the Robin Hood Algorithm

    Get PDF
    We present a novel technique by which highly-segmented electrostatic configurations can be solved. The Robin Hood method is a matrix-inversion algorithm optimized for solving high density boundary element method (BEM) problems. We illustrate the capabilities of this solver by studying two distinct geometry scales: (a) the electrostatic potential of a large volume beta-detector and (b) the field enhancement present at surface of electrode nano-structures. Geometries with elements numbering in the O(10^5) are easily modeled and solved without loss of accuracy. The technique has recently been expanded so as to include dielectrics and magnetic materials.Comment: 40 pages, 20 figure

    A SEISMOLOGIC STUDY OF THE NORTHERN MISSISSIPPI EMBAYMENT

    Get PDF
    Part 1: Crustal structure in the New Madrid Seismic Zone (NMSZ) is investigated through a detailed study of explosion data obtained from the Embayment Seismic Excitation Experiment. The data show a distinct anisotropy in distance attenuation for both P and S waves in the range from 0 to 200km distance. Waves that propagate northward from the 1,134kg Marked Tree, Arkansas, explosion attenuate quickly with distance until a range of about 100km from the source where high-amplitude, high-phase velocity critical reflections from the boundary between the middle crust and rift pillow structure produce high amplitude waves. Propagation southward from the 2,268kg Mooring, Tennessee blast shows less distance attenuation compared to northward propagation. Reflections from the middle crust-lower crust boundary occur but do not significantly increase in amplitude with distance and travel with slower apparent phase velocity than observed for the northward propagation data set. A smooth velocity model is developed using a stabilized Weichert-Herglotz travel time inversion using first arrival travel times. Then an inversion using the travel time of both direct and middle crustal reflected waves is developed to obtain a 2D inhomogeneous-layered isotropic crustal model. The result reveals that there is a significant southwest dip to the top of the middle crust interface in the vicinity of the NMSZ, consistent with previously inferred changes in the thickness of the rift pillow model. This 2D feature characterizes the local wave propagation along the Reelfoot Rift and demonstrates the need for an improvement of the current Central United States velocity model.Part 2: Obtaining reliable empirical Greens functions (EGFs) from ambient noise by seismic interferometry requires homogenously distributed noise sources. However, it is difficult to attain this condition since ambient noise data usually contains highly correlated signals from earthquakes or other transient sources from human activities. Removing these transient signals is one of the most essential steps in the whole data processing flow to obtain EGFs. We propose to use a denoising method based on the continuous wavelet transform to achieve this goal. The noise level is estimated in the wavelet domain for each scale by determing the 99% confidence level of the empirical probability density function of the noise wavelet coefficients. The correlated signals are then removed by an efficient soft thresholding method. The same denoising algorithm is also applied to remove the noise in the final stacked cross-correlogram. A complete data processing workflow is provided with the overall data processing procedure divided into four stages: (1) single station data preparation, (2) removal of earthquakes and other transient signals in the seismic record, (3) spectrum whitening, cross-correlation and temporal stacking, and (4) remove the noise in the stacked cross-correlogram to deliver the final EGF. The whole process is automated to make it accessible for large datasets. Synthetic data constructed with a recorded earthquake and recorded ambient noise is used to test the denoising method. We then apply the new processing workflow to data recorded by the USArray Transportable Array stations near the New Madrid Seismic Zone where many seismic events and transient signals are observed. We compare the EGFs calculated from our workflow with commonly used time domain normalization method and our results show improved signal-to-noise ratios. The new workflow can deliever reliable EGFs for further studies.Part 3: We incorporate seismic ambient noise data recorded by different temporary and permanent broadband stations around the northern Mississippi Embayment from 1990 to 2018 to develop a crustal shear wave velocity (Vs) model for this area with full waveform ambient noise tomography. Empirical Greens functions at periods between 8 and 40s for all the possible pairs of stations are extracted by using a new seismic ambient noise data processing flow based on the continuous wavelet transform. Synthetic waveforms are then calculated through a heterogeneous Earth model using a GPU-enabled collocated finite-difference code. The cross-correlation time shifts between the synthetic waveforms and the extracted empirical Greens functions are used to construct the velocity updated kernel by using the adjoint method. Starting from the Central United States Velocity Model, the shear wave velocity model is then iteratively updated with the Vs kernel calculated in each iteration. Checkerboard tests show that perturbations in the top 30km of the crust are well recovered but amplitude recovery ability gradually decreases for deeper structure. We find that velocity lows characterize the Reelfoot Rift Graben and Rough Creek Graben separated by a high velocity crust. High velocity anomalies are observed under the Ozark Uplift and Paducah Gravity Lineament. A low velocity area previously interpreted as the Missouri Batholith is observed between them. A massive high velocity body in the southeast Mississippi Embayment is observed and is explained by the faulting as well as partly mafic intrusion. The Ouachita-Appalachian Thrust Front is clearly observed with a thinner crustal layer underneath. The rift pillow is well observed in the final tomography model along the Reelfoot Rift in the lower crust. The final inverted velocity model is consistent with local geological features and can be used for other seismological studies such as earthquake source determination and earthquake hazard assessment

    High Performance Free Surface LBM on GPUs

    Get PDF

    Robust interactive simulation of deformable solids with detailed geometry using corotational FEM

    Get PDF
    This thesis focuses on the interactive simulation of highly detailed deformable solids modelled with the Corotational Finite Element Method. Starting from continuum mechanics we derive the discrete equations of motion and present a simulation scheme with support for user-in-the-loop interaction, geometric constraints and contact treatment. The interplay between accuracy and computational cost is discussed in depth, and practical approximations are analyzed with an emphasis on robustness and efficiency, as required by interactive simulation. The first part of the thesis focuses on deformable material discretization using the Finite Element Method with simplex elements and a corotational linear constitutive model, and presents our contributions to the solution of widely reported robustness problems in case of large stretch deformations and finite element degeneration. First,we introduce a stress differential approximation for quasi-implicit corotational linear FEM that improves its results for large deformations and closely matches the fullyimplicit solution with minor computational overhead. Next, we address the problem ofrobustness and realism in simulations involving element degeneration, and show that existing methods have previously unreported flaws that seriously threaten robustness and physical plausibility in interactive applications. We propose a new continuous-time approach, degeneration-aware polar decomposition, that avoids such flaws and yields robust degeneration recovery. In the second part we focus on geometry representation and contact determination for deformable solids with highly detailed surfaces. Given a high resolution closed surface mesh we automatically build a coarse embedding tetrahedralization and a partitioned representation of the collision geometry in a preprocess. During simulation, our proposed contact determination algorithm finds all intersecting pairs of deformed triangles using a memory-efficient barycentric bounding volume hierarchy, connects them into potentially disjoint intersection curves and performs a topological flood process on the exact intersection surfaces to discover a minimal set of contact points. A novel contact normal definition is used to find contact point correspondences suitable for contact treatment.Aquesta tesi tracta sobre la simulació interactiva de sòlids deformables amb superfícies detallades, modelats amb el Mètode dels Elements Finits (FEM) Corotacionals. A partir de la mecànica del continuu derivem les equacions del moviment discretes i presentem un esquema de simulació amb suport per a interacció d'usuari, restriccions geomètriques i tractament de contactes. Aprofundim en la interrelació entre precisió i cost de computació, i analitzem aproximacions pràctiques fent èmfasi en la robustesa i l'eficiència necessàries per a la simulació interactiva. La primera part de la tesi es centra en la discretització del material deformable mitjançant el Mètode dels Elements Finits amb elements de tipus s'implex i un model constituent basat en elasticitat linial corotacional, i presenta les nostres contribucions a la solució de problemes de robustesa àmpliament coneguts que apareixen en cas de sobreelongament i degeneració dels elements finits. Primer introduïm una aproximació dels diferencials d'estress per a FEM linial corotacional amb integració quasi-implícita que en millora els resultats per a deformacions grans i s'apropa a la solució implícita amb un baix cost computacional. A continuació tractem el problema de la robustesa i el realisme en simulacions que inclouen degeneració d'elements finits, i mostrem que els mètodes existents presenten inconvenients que posen en perill la robustesa plausibilitat de la simulació en aplicacions interactives. Proposem un enfocament nou basat en temps continuu, la descomposició polar amb coneixement de degeneració, que evita els inconvenients esmentats i permet corregir la degeneració de forma robusta. A la segona part de la tesi ens centrem en la representació de geometria i la determinació de contactes per a sòlids deformables amb superfícies detallades. A partir d'una malla de superfície tancada construím una tetraedralització englobant de forma automàtica en un preprocés, i particionem la geometria de colisió. Proposem un algorisme de detecció de contactes que troba tots els parells de triangles deformats que intersecten mitjançant una jerarquia de volums englobants en coordenades baricèntriques, els connecta en corbes d'intersecció potencialment disjuntes i realitza un procés d'inundació topològica sobre les superfícies d'intersecció exactes per tal de descobrir un conjunt mínim de punts de contacte. Usem una definició nova de la normal de contacte per tal de calcular correspondències entre punts de contacte útils per al seu tractament.Postprint (published version
    corecore