20,139 research outputs found

    Model metadata report for a 3D model of Holy Island

    Get PDF
    This report is the published metadata details of a 3d modelling study by the British Geological Survey (BGS), and is based on Holy Island. The model was developed under the 3d Models for Teaching team, part of the Geological Modelling Systems program at BGS. 3D geological models have great potential as a resource for universities when teaching foundation geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for all students of geology. Today’s earth science students use a variety of skills and processes during their learning experience including the application of schema’s, spatial thinking, image construction, detecting patterns, memorising figures, mental manipulation and interpretation, making predictions and deducing the orientation of themselves and the rocks. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth

    Model metadata report for a 3D model of Black Down, Mendips

    Get PDF
    This report is the published metadata details of a 3d modelling study by the British Geological Survey (BGS), and is based on the eastern section of the Mendips called Black Down. The model was developed under the 3d Models for Teaching team, part of the Geological Modelling Systems program at BGS. 3D geological models have great potential as a resource for universities when teaching foundation geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for all students of geology. Today’s earth science students use a variety of skills and processes during their learning experience including the application of schema’s, spatial thinking, image construction, detecting patterns, memorising figures, mental manipulation and interpretation, making predictions and deducing the orientation of themselves and the rocks. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth

    The end of the map?

    Get PDF
    Martin Smith and Andy Howard* explain why moving away from the printed map to a digital 3D National Geological Model is a ‘coming of age’ for William Smith’s great visio

    Geophysical investigation of the Pb-Zn deposit of Lontzen-Poppelsberg, Belgium

    Get PDF
    The drillhole information from the Lontzen-Poppelsberg site has demonstrated three orebodies and has allowed the estimation of the extension of the lodes, their dip, and the location at the ground surface. The localisation of the lodes makes them excellent targets for further exploration with geophysics. This deposit is classified as a Mississippi Valley Type (MVT) deposit. It consists mainly of Pb-Zn-Fe sulphides that display contrasting values in resistivity, chargeability, density, and magnetic susceptibility, with regards to the sedimentary host rocks. The dipole-dipole direct current (DC) resistivity and induce polarization (IP) profiles have been collected and inverted to successfully delineate the Pb-Zn mineralization and the geological structures. Short-spacing EM34 electromagnetic conductivity data were collected mainly on the top of Poppelsberg East lode and have revealed a conductive body matching with the geologically modelled mineralization. Gravity profiles have been carried out perpendicularly to the lode orientation; they show a strong structural anomaly. High resolution ground magnetic data were collected over the study area, but they showed no anomaly over the ore deposits. The geophysical inversion results are complementary to the model based on drill information, and allow us to refine the delineation of the mineralization. The identification of the geophysical signatures of this deposit permits targeting new possible mineralization in the area

    Subgrade geology beneath railways in Manchester

    Get PDF
    It is not sufficient to identify fine-grained soils, only, as locations for potential subgrade problems as could be done using a traditional 2D geological map. More information is required about the geological structure, lithological variability, mineralogy, moisture content and geotechnical properties of the soil, much of which can be supplied by modern 3D geospatial databases. These databases can be interrogated at key depths to show the wide variability of geological materials and conditions beneath the ground surface. Geological outcrop and thickness of bedrock an superficial deposits (soils), plus the permeability and water table level are predicted from the Manchester geospatial model that is based on 6500 borehole records. Geological sections along railway routes are modelled and the locations of problem soils such as alluvium, till and glaciolacustrine deposits at outcrop and shallow subcrop are identified. Spatial attribution of geotechnical data and simple methods to recast sections in engineering geological terms are demonstrated

    Responding to a world of change

    Get PDF
    The BGS is proud of the central role our surveying has played in the development of geology as a science. We are equally proud of our contribution to the understanding of key issues such as the age and evolution of the Earth and life, the origin and classification of rocks, and the impact of humans on the earth system. With 175 years of dedicated surveying behind us, the UK is already better served with geological information than most other countries. However, in today’s rapidly evolving, knowledge-based economy, we must continually adapt our surveying to meet the changing needs of society

    3D modelling of geological and anthropogenic deposits at the World Heritage Site of Bryggen in Bergen, Norway

    Get PDF
    The landscape of many historic cities and the character of their shallow subsurface environments are defined by a legacy of interaction between anthropogenic and geological processes. Anthropogenic deposits and excavations result from processes ranging from archaeological activities to modern urban development. Hence, in heritage cities, any geological investigation should acknowledge the role of past and ongoing human activities, while any archaeological investigation should be conducted with geological processes in mind. In this paper it is shown that 3D geological and anthropogenic models at different scales can provide a holistic system for the management of the subsurface. It provides a framework for the integration of other spatial and processmodels to help assess the preservationpotential for buried heritage. Such an integrated framework model is thus contributing to a decision support system for sustainable urban (re)development and regeneration in cities, while preserving cultural heritage. A collaborative approach is proposed to enhance research and implementation of combined geological and archaeological modelling for sustainable land use planning and heritage preservation, using York and Bryggen as prime examples. This paper presents the status of 3D framework modelling at Bryggen in Norway as an example

    Aspects of the tectonics of the Greater Caucasus and Western South Caspian Basin

    Get PDF
    The main objectives of this project are to (a) understand the relationship between climate, topography and the tectonics in the Greater Caucasus belt, (b) construct regional geological cross-sections showing major stratigraphic sequences and structures along the belt using the focal mechanisms of the earthquakes events, (c) evaluate the evolution and development of a single fold structure (Yasamal anticline) and (d) investigate strain accommodation mechanisms using 3D Move to unfold the Yasamal structure. Topographic variations were investigated to understand the interplay between topography, climate and the tectonics of the Greater Caucasus range and compare the findings with other active and inactive belts (Pyrenees, Northern Tibetan Plateau and Himalayas). There is a correlation between elevation changes and climate along the Greater Caucasus belt, where the gradual reduction of the mean altitude, has a close relationship with a wetter climate, and the sharper altitude decrease with a drier climate. And the elevation changes are strongly correlated with the Moho depths underneath the region. The relief along the belt is extremely high, with a strong correlation between the high relief and the large thrusts in the region. And the relief of the eastern part is slightly low compared with the western part of the belt, even though the eastern part is more active than the western part. The structural study undertaken at regional scale for the Caucasus belt and the western side of the South Caspian Basin gave insights on the style of deformation in the basin and the evolution of the Greater Caucasus belt and the preferred distribution, geometry and formation mechanism of the structural elements. The regional cross-sections along the Greater Caucasus were constructed and constrained by using focal mechanisms show that the belt is deformed by active thrust faults that dip inwards from the margins of the range where the northern thrusts are dipping south, and the southern thrusts are dipping to the north, these results have contrary to some previous models that emphasise only south-directed thrusting. The spatial arrangement, geometry and temporal evolution of spectacular kilometre-amplitude fold structures actively forming in Cenozoic sediments on the uplifted western margin of the South Caspian Basin are described and strain accommodation mechanisms established using 3D Move to unfold the Yasamal structure enabled a reconstruction of pre-folding templates and predictively model the fold-related deformation at small-scale. The 3D model of the Yasamal anticline shows that the anticline hinge has about 30° south-directed plunging. The area was characterized by a low rate of sedimentation and high rate of uplift in the Upper Pliocene. The minor structures (accommodating the overall strain in the anticline) are developed throughout the entire anticline. Compressional strain is present at the anticline hinge line, and the extensional strain dominates the anticline limbs. Suggesting potential extensional structures development in the anticline flanks, which correspond with the field observations in the Yasamal valley confirming that; the small normal faults are concentrated within the anticline flanks, and the contractional deformation bands along the hinge area of the anticline

    Seismic response of the geologically complex alluvial valley at the "Europarco Business Park" (Rome - Italy) through instrumental records and numerical modelling

    Get PDF
    The analysis of the local seismic response in the “Europarco Business Park”, a recently urbanized district of Rome (Italy) developed over the alluvial valley of the “Fosso di Vallerano” stream, is here presented. A high-resolution geological model, reconstructed over 250 borehole log-stratigraphies, shows a complex and heterogeneous setting of both the local Plio- Pleistocene substratum and the Holocene alluvia. The local seismo-stratigraphy is derived by a calibration process performed through 1D numerical modelling, accounting for: i) 55 noise measurements, ii) 10 weak motion records obtained through a temporary velocimetric array during the August 2009 L’Aquila- Gran Sasso seismic sequence and iii) one cross-hole test available from technical report. Based on the reconstructed seismo- stratigraphy, the local seismic bedrock is placed at the top of a gravel layer that is part of the Pleistocene deposits and it does not correspond to the local geological bedrock represented by Plio-Pleistocene marine deposits. 1D amplification functions were derived via numerical modelling along three representative sections that show how in the Fosso di Vallerano area two valleys converge into a single one moving from SE toward NW. The obtained results reveal a main resonance at low frequency (about 0.8 Hz) and several higher resonance modes, related to the local geological setting. Nonlinear effects are also modelled by using strong motion inputs from the official regional dataset and pointed out a general down-shift (up to 0.5 Hz) of the principal modes of resonance as well as an amplitude reduction of the amplification function at frequencies higher than 7 Hz
    corecore