570 research outputs found

    Markerless View Independent Gait Analysis with Self-camera Calibration

    No full text
    We present a new method for viewpoint independent markerless gait analysis. The system uses a single camera, does not require camera calibration and works with a wide range of directions of walking. These properties make the proposed method particularly suitable for identification by gait, where the advantages of completely unobtrusiveness, remoteness and covertness of the biometric system preclude the availability of camera information and use of marker based technology. Tests on more than 200 video sequences with subjects walking freely along different walking directions have been performed. The obtained results show that markerless gait analysis can be achieved without any knowledge of internal or external camera parameters and that the obtained data that can be used for gait biometrics purposes. The performance of the proposed method is particularly encouraging for its appliance in surveillance scenarios

    Covariate Analysis for View-point Independent Gait Recognition

    No full text
    Many studies have shown that gait can be deployed as a biometric. Few of these have addressed the effects of view-point and covariate factors on the recognition process. We describe the first analysis which combines view-point invariance for gait recognition which is based on a model-based pose estimation approach from a single un-calibrated camera. A set of experiments are carried out to explore how such factors including clothing, carrying conditions and view-point can affect the identification process using gait. Based on a covariate-based probe dataset of over 270 samples, a recognition rate of 73.4% is achieved using the KNN classifier. This confirms that people identification using dynamic gait features is still perceivable with better recognition rate even under the different covariate factors. As such, this is an important step in translating research from the laboratory to a surveillance environment

    Human Perambulation as a Self Calibrating Biometric

    No full text
    This paper introduces a novel method of single camera gait reconstruction which is independent of the walking direction and of the camera parameters. Recognizing people by gait has unique advantages with respect to other biometric techniques: the identification of the walking subject is completely unobtrusive and the identification can be achieved at distance. Recently much research has been conducted into the recognition of frontoparallel gait. The proposed method relies on the very nature of walking to achieve the independence from walking direction. Three major assumptions have been done: human gait is cyclic; the distances between the bone joints are invariant during the execution of the movement; and the articulated leg motion is approximately planar, since almost all of the perceived motion is contained within a single limb swing plane. The method has been tested on several subjects walking freely along six different directions in a small enclosed area. The results show that recognition can be achieved without calibration and without dependence on view direction. The obtained results are particularly encouraging for future system development and for its application in real surveillance scenarios

    Markerless Human Motion Analysis

    Get PDF
    Measuring and understanding human motion is crucial in several domains, ranging from neuroscience, to rehabilitation and sports biomechanics. Quantitative information about human motion is fundamental to study how our Central Nervous System controls and organizes movements to functionally evaluate motor performance and deficits. In the last decades, the research in this field has made considerable progress. State-of-the-art technologies that provide useful and accurate quantitative measures rely on marker-based systems. Unfortunately, markers are intrusive and their number and location must be determined a priori. Also, marker-based systems require expensive laboratory settings with several infrared cameras. This could modify the naturalness of a subject\u2019s movements and induce discomfort. Last, but not less important, they are computationally expensive in time and space. Recent advances on markerless pose estimation based on computer vision and deep neural networks are opening the possibility of adopting efficient video-based methods for extracting movement information from RGB video data. In this contest, this thesis presents original contributions to the following objectives: (i) the implementation of a video-based markerless pipeline to quantitatively characterize human motion; (ii) the assessment of its accuracy if compared with a gold standard marker-based system; (iii) the application of the pipeline to different domains in order to verify its versatility, with a special focus on the characterization of the motion of preterm infants and on gait analysis. With the proposed approach we highlight that, starting only from RGB videos and leveraging computer vision and machine learning techniques, it is possible to extract reliable information characterizing human motion comparable to that obtained with gold standard marker-based systems

    Towards automated visual surveillance using gait for identity recognition and tracking across multiple non-intersecting cameras

    No full text
    Despite the fact that personal privacy has become a major concern, surveillance technology is now becoming ubiquitous in modern society. This is mainly due to the increasing number of crimes as well as the essential necessity to provide secure and safer environment. Recent research studies have confirmed now the possibility of recognizing people by the way they walk i.e. gait. The aim of this research study is to investigate the use of gait for people detection as well as identification across different cameras. We present a new approach for people tracking and identification between different non-intersecting un-calibrated stationary cameras based on gait analysis. A vision-based markerless extraction method is being deployed for the derivation of gait kinematics as well as anthropometric measurements in order to produce a gait signature. The novelty of our approach is motivated by the recent research in biometrics and forensic analysis using gait. The experimental results affirmed the robustness of our approach to successfully detect walking people as well as its potency to extract gait features for different camera viewpoints achieving an identity recognition rate of 73.6 % processed for 2270 video sequences. Furthermore, experimental results confirmed the potential of the proposed method for identity tracking in real surveillance systems to recognize walking individuals across different views with an average recognition rate of 92.5 % for cross-camera matching for two different non-overlapping views.<br/

    A 2D Markerless Gait Analysis Methodology: Validation on Healthy Subjects

    Get PDF
    A 2D markerless technique is proposed to perform lower limb sagittal plane kinematic analysis using a single video camera. A subject-specific, multisegmental model of the lower limb was calibrated with the subject in an upright standing position. Ankle socks and underwear garments were used to track the feet and pelvis segments, whereas shank and thigh segments were tracked by means of reference points identified on the model. The method was validated against a marker based clinical gait model. The accuracy of the spatiotemporal parameters estimation was found suitable for clinical use (errors between 1% and 3% of the corresponding true values). Comparison analysis of the kinematics patterns obtained with the two systems revealed high correlation for all the joints (0.82<R2<0.99). Differences between the joint kinematics estimates ranged from 3.9 deg to 6.1 deg for the hip, from 2.7 deg to 4.4 deg for the knee, and from 3.0 deg to 4.7 deg for the ankle. The proposed technique allows a quantitative assessment of the lower limb motion in the sagittal plane, simplifying the experimental setup and reducing the cost with respect to traditional marker based gait analysis protocols

    Markerless measurement techniques for motion analysis in sports science

    Get PDF
    Markerless motion capture system and X-ray fluoroscopy as two markerless measurement systems were introduced to the application method in sports biomechanical areas. An overview of the technological process, data accuracy, suggested movements, and recommended body parts were explained. The markerless motion capture system consists of four parts: camera, body model, image feature, and algorithms. Even though the markerless motion capture system seems promising, it is not yet known whether these systems can be used to achieve the required accuracy and whether they can be appropriately used in sports biomechanics and clinical research. The biplane fluoroscopy technique analyzes motion data by collecting, image calibrating, and processing, which is effective for determining small joint kinematic changes and calculating joint angles. The method was used to measure walking and jumping movements primarily because of the experimental conditions and mainly to detect the data of lower limb joints

    Characterization of Infants' General Movements Using a Commercial RGB-Depth Sensor and a Deep Neural Network Tracking Processing Tool: An Exploratory Study

    Get PDF
    Cerebral palsy, the most common childhood neuromotor disorder, is often diagnosed through visual assessment of general movements (GM) in infancy. This skill requires extensive training and is thus difficult to implement on a large scale. Automated analysis of GM performed using low-cost instrumentation in the home may be used to estimate quantitative metrics predictive of movement disorders. This study explored if infants' GM may be successfully evaluated in a familiar environment by processing the 3D trajectories of points of interest (PoI) obtained from recordings of a single commercial RGB-D sensor. The RGB videos were processed using an open-source markerless motion tracking method which allowed the estimation of the 2D trajectories of the selected PoI and a purposely developed method which allowed the reconstruction of their 3D trajectories making use of the data recorded with the depth sensor. Eight infants' GM were recorded in the home at 3, 4, and 5 months of age. Eight GM metrics proposed in the literature in addition to a novel metric were estimated from the PoI trajectories at each timepoint. A pediatric neurologist and physiatrist provided an overall clinical evaluation from infants' video. Subsequently, a comparison between metrics and clinical evaluation was performed. The results demonstrated that GM metrics may be meaningfully estimated and potentially used for early identification of movement disorders
    • …
    corecore