95 research outputs found

    Automatic pharynx and larynx cancer segmentation framework (PLCSF) on contrast enhanced MR images

    Get PDF
    A novel and effective pharynx and larynx cancer segmentation framework (PLCSF) is presented for automatic base of tongue and larynx cancer segmentation from gadolinium-enhanced T1-weighted magnetic resonance images (MRI). The aim of the proposed PLCSF is to assist clinicians in radiotherapy treatment planning. The initial processing of MRI data in PLCSF includes cropping of region of interest; reduction of artefacts and detection of the throat region for the location prior. Further, modified fuzzy c-means clustering is developed to robustly separate candidate cancer pixels from other tissue types. In addition, region-based level set method is evolved to ensure spatial smoothness for the final segmentation boundary after noise removal using non-linear and morphological filtering. Validation study of PLCSF on 102 axial MRI slices demonstrate mean dice similarity coefficient of 0.79 and mean modified Hausdorff distance of 2.2 mm when compared with manual segmentations. Comparison of PLCSF with other algorithms validates the robustness of the PLCSF. Inter- and intra-variability calculations from manual segmentations suggest that PLCSF can help to reduce the human subjectivity

    BEMDEC: An Adaptive and Robust Methodology for Digital Image Feature Extraction

    Get PDF
    The intriguing study of feature extraction, and edge detection in particular, has, as a result of the increased use of imagery, drawn even more attention not just from the field of computer science but also from a variety of scientific fields. However, various challenges surrounding the formulation of feature extraction operator, particularly of edges, which is capable of satisfying the necessary properties of low probability of error (i.e., failure of marking true edges), accuracy, and consistent response to a single edge, continue to persist. Moreover, it should be pointed out that most of the work in the area of feature extraction has been focused on improving many of the existing approaches rather than devising or adopting new ones. In the image processing subfield, where the needs constantly change, we must equally change the way we think. In this digital world where the use of images, for variety of purposes, continues to increase, researchers, if they are serious about addressing the aforementioned limitations, must be able to think outside the box and step away from the usual in order to overcome these challenges. In this dissertation, we propose an adaptive and robust, yet simple, digital image features detection methodology using bidimensional empirical mode decomposition (BEMD), a sifting process that decomposes a signal into its two-dimensional (2D) bidimensional intrinsic mode functions (BIMFs). The method is further extended to detect corners and curves, and as such, dubbed as BEMDEC, indicating its ability to detect edges, corners and curves. In addition to the application of BEMD, a unique combination of a flexible envelope estimation algorithm, stopping criteria and boundary adjustment made the realization of this multi-feature detector possible. Further application of two morphological operators of binarization and thinning adds to the quality of the operator

    Adaptive kernel estimation for enhanced filtering and pattern classification of magnetic resonance imaging: novel techniques for evaluating the biomechanics and pathologic conditions of the lumbar spine

    Get PDF
    This dissertation investigates the contribution the lumbar spine musculature has on etiological and pathogenic characteristics of low back pain and lumbar spondylosis. This endeavor necessarily required a two-step process: 1) design of an accurate post-processing method for extracting relevant information via magnetic resonance images and 2) determine pathological trends by elucidating high-dimensional datasets through multivariate pattern classification. The lumbar musculature was initially evaluated by post-processing and segmentation of magnetic resonance (MR) images of the lumbar spine, which characteristically suffer from nonlinear corruption of the signal intensity. This so called intensity inhomogeneity degrades the efficacy of traditional intensity-based segmentation algorithms. Proposed in this dissertation is a solution for filtering individual MR images by extracting a map of the underlying intensity inhomogeneity to adaptively generate local estimates of the kernel’s optimal bandwidth. The adaptive kernel is implemented and tested within the structure of the non-local means filter, but also generalized and extended to the Gaussian and anisotropic diffusion filters. Testing of the proposed filters showed that the adaptive kernel significantly outperformed their non-adaptive counterparts. A variety of performance metrics were utilized to measure either fine feature preservation or accuracy of post-processed segmentation. Based on these metrics the adaptive filters proposed in this dissertation significantly outperformed the non-adaptive versions. Using the proposed filter, the MR data was semi-automatically segmented to delineate between adipose and lean muscle tissues. Two important findings were reached utilizing this data. First, a clear distinction between the musculature of males and females was established that provided 100% accuracy in being able to predict gender. Second, degenerative lumbar spines were accurately predicted at a rate of up to 92% accuracy. These results solidify prior assumptions made regarding sexual dimorphic anatomy and the pathogenic nature of degenerative spine disease

    Faster and better: a machine learning approach to corner detection

    Full text link
    The repeatability and efficiency of a corner detector determines how likely it is to be useful in a real-world application. The repeatability is importand because the same scene viewed from different positions should yield features which correspond to the same real-world 3D locations [Schmid et al 2000]. The efficiency is important because this determines whether the detector combined with further processing can operate at frame rate. Three advances are described in this paper. First, we present a new heuristic for feature detection, and using machine learning we derive a feature detector from this which can fully process live PAL video using less than 5% of the available processing time. By comparison, most other detectors cannot even operate at frame rate (Harris detector 115%, SIFT 195%). Second, we generalize the detector, allowing it to be optimized for repeatability, with little loss of efficiency. Third, we carry out a rigorous comparison of corner detectors based on the above repeatability criterion applied to 3D scenes. We show that despite being principally constructed for speed, on these stringent tests, our heuristic detector significantly outperforms existing feature detectors. Finally, the comparison demonstrates that using machine learning produces significant improvements in repeatability, yielding a detector that is both very fast and very high quality.Comment: 35 pages, 11 figure

    Constructing 3D faces from natural language interface

    Get PDF
    This thesis presents a system by which 3D images of human faces can be constructed using a natural language interface. The driving force behind the project was the need to create a system whereby a machine could produce artistic images from verbal or composed descriptions. This research is the first to look at constructing and modifying facial image artwork using a natural language interface. Specialised modules have been developed to control geometry of 3D polygonal head models in a commercial modeller from natural language descriptions. These modules were produced from research on human physiognomy, 3D modelling techniques and tools, facial modelling and natural language processing. [Continues.

    Scaling Multidimensional Inference for Big Structured Data

    Get PDF
    In information technology, big data is a collection of data sets so large and complex that it becomes difficult to process using traditional data processing applications [151]. In a world of increasing sensor modalities, cheaper storage, and more data oriented questions, we are quickly passing the limits of tractable computations using traditional statistical analysis methods. Methods which often show great results on simple data have difficulties processing complicated multidimensional data. Accuracy alone can no longer justify unwarranted memory use and computational complexity. Improving the scaling properties of these methods for multidimensional data is the only way to make these methods relevant. In this work we explore methods for improving the scaling properties of parametric and nonparametric models. Namely, we focus on the structure of the data to lower the complexity of a specific family of problems. The two types of structures considered in this work are distributive optimization with separable constraints (Chapters 2-3), and scaling Gaussian processes for multidimensional lattice input (Chapters 4-5). By improving the scaling of these methods, we can expand their use to a wide range of applications which were previously intractable open the door to new research questions
    • …
    corecore