869 research outputs found

    Automated Diagnosis of Cardiovascular Diseases from Cardiac Magnetic Resonance Imaging Using Deep Learning Models: A Review

    Full text link
    In recent years, cardiovascular diseases (CVDs) have become one of the leading causes of mortality globally. CVDs appear with minor symptoms and progressively get worse. The majority of people experience symptoms such as exhaustion, shortness of breath, ankle swelling, fluid retention, and other symptoms when starting CVD. Coronary artery disease (CAD), arrhythmia, cardiomyopathy, congenital heart defect (CHD), mitral regurgitation, and angina are the most common CVDs. Clinical methods such as blood tests, electrocardiography (ECG) signals, and medical imaging are the most effective methods used for the detection of CVDs. Among the diagnostic methods, cardiac magnetic resonance imaging (CMR) is increasingly used to diagnose, monitor the disease, plan treatment and predict CVDs. Coupled with all the advantages of CMR data, CVDs diagnosis is challenging for physicians due to many slices of data, low contrast, etc. To address these issues, deep learning (DL) techniques have been employed to the diagnosis of CVDs using CMR data, and much research is currently being conducted in this field. This review provides an overview of the studies performed in CVDs detection using CMR images and DL techniques. The introduction section examined CVDs types, diagnostic methods, and the most important medical imaging techniques. In the following, investigations to detect CVDs using CMR images and the most significant DL methods are presented. Another section discussed the challenges in diagnosing CVDs from CMR data. Next, the discussion section discusses the results of this review, and future work in CVDs diagnosis from CMR images and DL techniques are outlined. The most important findings of this study are presented in the conclusion section

    The Role of Cardiovascular Magnetic Resonance in Pediatric Congenital Heart Disease

    Get PDF
    Cardiovascular magnetic resonance (CMR) has expanded its role in the diagnosis and management of congenital heart disease (CHD) and acquired heart disease in pediatric patients. Ongoing technological advancements in both data acquisition and data presentation have enabled CMR to be integrated into clinical practice with increasing understanding of the advantages and limitations of the technique by pediatric cardiologists and congenital heart surgeons. Importantly, the combination of exquisite 3D anatomy with physiological data enables CMR to provide a unique perspective for the management of many patients with CHD. Imaging small children with CHD is challenging, and in this article we will review the technical adjustments, imaging protocols and application of CMR in the pediatric population

    Accelerated CMR using zonal, parallel and prior knowledge driven imaging methods

    Get PDF
    Accelerated imaging is highly relevant for many CMR applications as competing constraints with respect to spatiotemporal resolution and tolerable scan times are frequently posed. Three approaches, all involving data undersampling to increase scan efficiencies, are discussed in this review. Zonal imaging can be considered a niche but nevertheless has found application in coronary imaging and CMR flow measurements. Current work on parallel-transmit systems is expected to revive the interest in zonal imaging techniques. The second and main approach to speeding up CMR sequences has been parallel imaging. A wide range of CMR applications has benefited from parallel imaging with reduction factors of two to three routinely applied for functional assessment, perfusion, viability and coronary imaging. Large coil arrays, as are becoming increasingly available, are expected to support reduction factors greater than three to four in particular in combination with 3D imaging protocols. Despite these prospects, theoretical work has indicated fundamental limits of coil encoding at clinically available magnetic field strengths. In that respect, alternative approaches exploiting prior knowledge about the object being imaged as such or jointly with parallel imaging have attracted considerable attention. Five to eight-fold scan accelerations in cine and dynamic CMR applications have been reported and image quality has been found to be favorable relative to using parallel imaging alone

    Regional contrast agent quantification in a mouse model of myocardial infarction using 3D cardiac T1 mapping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantitative relaxation time measurements by cardiovascular magnetic resonance (CMR) are of paramount importance in contrast-enhanced studies of experimental myocardial infarction. First, compared to qualitative measurements based on signal intensity changes, they are less sensitive to specific parameter choices, thereby allowing for better comparison between different studies or during longitudinal studies. Secondly, T<sub>1 </sub>measurements may allow for quantification of local contrast agent concentrations. In this study, a recently developed 3D T<sub>1 </sub>mapping technique was applied in a mouse model of myocardial infarction to measure differences in myocardial T<sub>1 </sub>before and after injection of a liposomal contrast agent. This was then used to assess the concentration of accumulated contrast agent.</p> <p>Materials and methods</p> <p>Myocardial ischemia/reperfusion injury was induced in 8 mice by transient ligation of the LAD coronary artery. Baseline quantitative T<sub>1 </sub>maps were made at day 1 after surgery, followed by injection of a Gd-based liposomal contrast agent. Five mice served as control group, which followed the same protocol without initial surgery. Twenty-four hours post-injection, a second T<sub>1 </sub>measurement was performed. Local ΔR<sub>1 </sub>values were compared with regional wall thickening determined by functional cine CMR and correlated to <it>ex vivo </it>Gd concentrations determined by ICP-MS.</p> <p>Results</p> <p>Compared to control values, pre-contrast T<sub>1 </sub>of infarcted myocardium was slightly elevated, whereas T<sub>1 </sub>of remote myocardium did not significantly differ. Twenty-four hours post-contrast injection, high ΔR<sub>1 </sub>values were found in regions with low wall thickening values. However, compared to remote tissue (wall thickening > 45%), ΔR<sub>1 </sub>was only significantly higher in severe infarcted tissue (wall thickening < 15%). A substantial correlation (<it>r </it>= 0.81) was found between CMR-based ΔR<sub>1 </sub>values and Gd concentrations from <it>ex vivo </it>ICP-MS measurements. Furthermore, regression analysis revealed that the effective relaxivity of the liposomal contrast agent was only about half the value determined <it>in vitro</it>.</p> <p>Conclusions</p> <p>3D cardiac T<sub>1 </sub>mapping by CMR can be used to monitor the accumulation of contrast agents in contrast-enhanced studies of murine myocardial infarction. The contrast agent relaxivity was decreased under <it>in vivo </it>conditions compared to <it>in vitro </it>measurements, which needs consideration when quantifying local contrast agent concentrations.</p

    Aortic valvular imaging with cardiovascular magnetic resonance: seeking for comprehensiveness

    Get PDF
    Cardiovascular magnetic resonance (CMR) has an emerging role in aortic valve disease evaluation (AVD), becoming an all-in-one technique. CMR evaluation of the anatomy and flow through the aortic valve has a higher reproducibility than echocardiography. Its unique ability of in-vivo myocardial tissue characterization, significantly improves the risk stratification and management of patients. In addition, CMR is equivalent to cardiac computed tomography angiography for trans-aortic valvular implantation and surgical aortic valve replacement planning; on the other hand, its role in the evaluation of ventricular function improving and post-treatment complications is undisputed. This review encompasses the existing literature regarding the role of CMR in AVD, exploring all the aspects of the disease, from diagnosis to prognosis

    Indications for cardiovascular magnetic resonance in children with congenital and acquired heart disease: an expert consensus paper of the Imaging Working Group of the AEPC and the Cardiovascular Magnetic Resonance Section of the EACVI

    Get PDF
    This article provides expert opinion on the use of cardiovascular magnetic resonance (CMR) in young patients with congenital heart disease (CHD) and in specific clinical situations. As peculiar challenges apply to imaging children, paediatric aspects are repeatedly discussed. The first section of the paper addresses settings and techniques, including the basic sequences used in paediatric CMR, safety, and sedation. In the second section, the indication, application, and clinical relevance of CMR in the most frequent CHD are discussed in detail. In the current era of multimodality imaging, the strengths of CMR are compared with other imaging modalities. At the end of each chapter, a brief summary with expert consensus key points is provided. The recommendations provided are strongly clinically oriented. The paper addresses not only imagers performing CMR, but also clinical cardiologists who want to know which information can be obtained by CMR and how to integrate it in clinical decision-makin
    corecore