73 research outputs found

    Optically Sensorized Tendons for Articulate Robotic Needles

    Get PDF
    This study proposes an optically sensorized tendon composed of a 195 µm diameter, high strength, polarization maintaining (PM) fiber Bragg gratings (FBG) optical fiber which resolves the cross-sensitivity issue of conventional FBGs. The bare fiber tendon is locally reinforced with a 250 µm diameter Kevlar bundle enhancing the level of force transmission and enabling high curvature tendon routing. The performance of the sensorized tendons is explored in terms of strength (higher than 13N for the bare PM-FBG fiber tendon, up to 40N for the Kevlar-reinforced tendon under tensile loading), strain sensitivity (0.127 percent strain per newton for the bare PM-FBG fiber tendon, 0.04 percent strain per newton for the Kevlar-reinforced tendon), temperature stability, and friction-independent sensing behavior. Subsequently, the tendon is instrumented within an 18 Ga articulate NiTi cannula and evaluated under static and dynamic loading conditions, and within phantoms of varying stiffness for tissue-stiffness estimation. The results from this series of experiments serve to validate the effectiveness of the proposed tendon as a bi-modal sensing and actuation component for robot-assisted minimally invasive surgical instruments

    SMART IMAGE-GUIDED NEEDLE INSERTION FOR TISSUE BIOPSY

    Get PDF
    M.S

    Intra-Operative Needle Tracking Using Optical Shape Sensing Technology

    Get PDF
    RÉSUMÉ Contexte : Les métastases hépatiques colorectales sont la principale cause de décès liée au cancer du foie dans le monde. Au cours de la dernière décennie, il a été démontré que l’ablation par radiofréquence (RFA, pour radiofrequency ablation) est une méthode de traitement percutané très efficace contre ce type de métastases. Cela dit, un positionnement précis de l’embout de l’aiguille utilisé en RFA est essentiel afin de se départir adéquatement de la totalité des cellules cancéreuses. Une technologie prometteuse pour obtenir la forme et la position de l’aiguille en temps réel est basée sur l’utilisation de réseaux de Bragg (FBG, pour fiber Bragg grating) à titre de senseur de contrainte. En effet, ce type de senseurs a une vitesse d’acquisition allant jusqu’à 20 kHz, ce qui est suffisamment rapide pour permettre des applications de guidage en temps réel. Méthode : Les travaux présentés au sein de ce mémoire décrivent le développement d’une technologie, compatible aux systèmes d’imageries par résonance magnétique (IRM), permettant d’effectuer le suivi de la forme de l’aiguille utilisée en RFA. Premièrement, trois fibres contenant une série de réseaux de Bragg ont été collées dans une géométrie spécifique et intégrées à l’intérieur d’une aiguille 20G-150 mm. Ensuite, un algorithme de reconstruction de forme tridimensionnelle a été développé, basé sur les mesures de translation spectrales des FBGs acquises en temps réel durant le guidage de l’aiguille. La position du bout de l’aiguille ainsi que la forme tridimensionnelle complète de celle-ci ont été représentées et comparées à la position de la zone ciblée à la suite d’une simple méthode de calibration. Finalement, nous avons validé notre système de navigation en effectuant une série d’expériences in vitro. La précision du système de reconstruction tridimensionnelle de la forme et de l’orientation de l’aiguille a été évaluée en utilisant deux caméras positionnées perpendiculairement de manière à connaitre la position de l’aiguille dans le système d’axes du laboratoire. L’évaluation de la précision au bout de l’aiguille a quant à elle été faite en utilisant des fantômes précisément conçus à cet effet. Finalement, des interventions guidées en IRM ont été testées et comparées au système de navigation électromagnétique NDI Aurora (EMTS, pour Electromagnétic tracking system) par le biais du FRE (fiducial registration error) et du TRE (target registration error). Résultats: Lors de nos premières expériences in vitro, la précision obtenue quant à la position du bout de l’aiguille était de 0,96 mm pour une déflexion allant jusqu’à ±10,68 mm. À titre comparatif, le système d’Aurora a une précision de 0.84 mm dans des circonstances similaires. Les résultats obtenus lors de nos seconds tests ont démontré que l’erreur entre la position réelle du bout de l’aiguille et la position fournie par notre système de reconstruction de forme est de 1,04 mm, alors qu’elle est de 0,82 mm pour le EMTS d’Aurora. Pour ce qui est de notre dispositif, cette erreur est proportionnelle à l’amplitude de déflexion de l’aiguille, contrairement à l’EMTS pour qui l’erreur demeure relativement constante. La dernière expérience a été effectuée à l’aide d’un fantôme en gélatine, pour laquelle nous avons obtenu un TRE de 1,19 mm pour notre système basé sur les FBG et de 1.06 mm pour le système de navigation par senseurs électromagnétiques (EMTS). Les résultats démontrent que l’évaluation du FRE est similaire pour les deux approches. De plus, l’information fournie par les caméras permet d’estimer la précision de notre dispositif en tout point le long de l’aiguille. Conclusion : En analysant et en interprétant les résultats obtenus lors de nos expériences in vitro, nous pouvons conclure que la précision de notre système de navigation basé sur les FBG est bien adaptée pour l’évaluation de la position du bout et la forme de l’aiguille lors d’interventions RFA des tumeurs du foie. La précision de notre système de navigation est fortement comparable avec celle du système basé sur des senseurs électromagnétiques commercialisé par Aurora. L’erreur obtenue par notre système est attribuable à un mauvais alignement des réseaux de Bragg par rapport au plan associé à la région sensorielle et aussi à la différence entre le diamètre des fibres et celui de la paroi interne de l’aiguille.----------ABSTRACT Background: Colorectal liver metastasis is the leading cause of liver cancer death in the world. In the past decade, radiofrequency ablation (RFA) has proven to be an effective percutaneous treatment modality for the treatment of metastatic hepatic cancer. Accurate needle tip placement is essential for RFA of liver tumors. A promising technology to obtain the real-time information of the shape of the needle is by using fiber Bragg grating (FBG) sensors at high frequencies (up to 20 kHz). Methods: In this thesis work, we developed an MR-compatible needle tracking technology designed for RFA procedures in liver cancer. At first, three fibers each containing a series of FBGs were glued together and integrated inside a 20G-150 mm needle. Then a three-dimensional needle shape reconstruction algorithm was developed, based on the FBG measurements collected in real-time during needle guidance. The tip position and shape of the reconstructed 3D needle model were represented with respect to the target defined in the image space by performing a fiducial-based registration. Finally, we validated our FBG-based needle navigation by doing a series of in-vitro experiments. The shape of the 3D reconstructed needle was compared to measurements obtained from camera images. In addition, the needle tip accuracy was assessed on the ground-truth phantoms. Finally, MRI guided intervention was tested and compared to an NDI Aurora EM tracking system (EMTS) in terms of fiducial registration error (FRE) and target registration error (TRE). Results: In our first in-vitro experiment, the tip tracking accuracy of our FBG tracking system was of 0.96 mm for the maximum tip deflection of up to ±10.68 mm, while the tip tracking accuracy of the Aurora system for the similar test was 0.84 mm. Results obtained from the second in-vitro experiment demonstrated tip tracking accuracy of 1.04 mm and 0.82 mm for our FBG tracking system and Aurora EMTS, respectively for the maximum tip deflection of up to ±16.83 mm. The tip tracking error in the developed FBG-based system reduced linearly with decreasing tip deflection, while the error was similar but randomly varying for the EMTS. The last experiment was done with a gel phantom, yielding a TRE of 1.19 mm and 1.06 mm for the FBG and EM tracking, respectively. Results showed that across all experiments, the computed FRE of both tracking systems was similar. Moreover, actual shape information obtained from the camera images ensured the shape accuracy of our FBG-based needle shape model. Conclusion: By analyzing and interpreting the results obtained from the in-vitro experiments, we conclude that the accuracy of our FBG-based tracking system is suitable for needle tip detection in RFA of liver tumors. The accuracy of our tracking system is nearly comparable to that of the Aurora EMTS. The error given by our tracking system is attributed to the misalignment of the FBG sensors in a single axial plane and also to the gap between the needle's inner wall and the fibers inside

    Design and evaluation of a computed tomography (CT)-compatible needle insertion device using an electromagnetic tracking system and CT images

    Get PDF
    Purpose Percutaneous needle insertion procedures are commonly used for diagnostic and therapeutic purposes. Although current technology allows accurate localization of lesions, they cannot yet be precisely targeted. Lung cancer is the most common cause of cancer-related death, and early detection reduces the mortality rate. Therefore, suspicious lesions are tested for diagnosis by performing needle biopsy. Methods In this paper, we have presented a novel computed tomography (CT)-compatible needle insertion device (NID). The NID is used to steer a flexible needle (ϕ0.55mm ϕ0.55mm) with a bevel at the tip in biological tissue. CT images and an electromagnetic (EM) tracking system are used in two separate scenarios to track the needle tip in three-dimensional space during the procedure. Our system uses a control algorithm to steer the needle through a combination of insertion and minimal number of rotations. Results Noise analysis of CT images has demonstrated the compatibility of the device. The results for three experimental cases (case 1: open-loop control, case 2: closed-loop control using EM tracking system and case 3: closed-loop control using CT images) are presented. Each experimental case is performed five times, and average targeting errors are 2.86±1.14 2.86±1.14, 1.11±0.14 1.11±0.14 and 1.94 0.63mm 1.94±0.63mm for case 1, case 2 and case 3, respectively. Conclusions The achieved results show that our device is CT-compatible and it is able to steer a bevel-tipped needle toward a target. We are able to use intermittent CT images and EM tracking data to control the needle path in a closed-loop manner. These results are promising and suggest that it is possible to accurately target the lesions in real clinical procedures in the future

    Pose Measurement of Flexible Medical Instruments Using Fiber Bragg Gratings in Multi-Core Fiber

    Get PDF
    Accurate navigation of flexible medical instruments like catheters require the knowledge of its pose, that is its position and orientation. In this paper multi-core fibers inscribed with fiber Bragg gratings (FBG) are utilized as sensors to measure the pose of a multi-segment catheter. A reconstruction technique that provides the pose of such a fiber is presented. First, the measurement from the Bragg gratings are converted to strain then the curvature is deduced based on those strain calculations. Next, the curvature and the Bishop frame equations are used to reconstruct the fiber. This technique is validated through experiments where the mean error in position and orientation is observed to be less than 4.69 mm and 6.48 degrees, respectively. The main contributions of the paper are the use of Bishop frames in the reconstruction and the experimental validation of the acquired pose

    Fiber bragg gratings for medical applications and future challenges: A review

    Get PDF
    In the last decades, fiber Bragg gratings (FBGs) have become increasingly attractive to medical applications due to their unique properties such as small size, biocompatibility, immunity to electromagnetic interferences, high sensitivity and multiplexing capability. FBGs have been employed in the development of surgical tools, assistive devices, wearables, and biosensors, showing great potentialities for medical uses. This paper reviews the FBG-based measuring systems, their principle of work, and their applications in medicine and healthcare. Particular attention is given to sensing solutions for biomechanics, minimally invasive surgery, physiological monitoring, and medical biosensing. Strengths, weaknesses, open challenges, and future trends are also discussed to highlight how FBGs can meet the demands of next-generation medical devices and healthcare system

    Shape Estimation of Concentric Tube Robots Using Single Point Position Measurement

    Get PDF

    Towards a procedure-optimised steerable catheter for deep-seated neurosurgery

    Get PDF
    In recent years, steerable needles have attracted significant interest in relation to minimally invasive surgery (MIS). Specifically, the flexible, programmable bevel-tip needle (PBN) concept was successfully demonstrated in vivo in an evaluation of the feasibility of convection-enhanced delivery (CED) for chemotherapeutics within the ovine model with a 2.5 mm PBN prototype. However, further size reductions are necessary for other diagnostic and therapeutic procedures and drug delivery operations involving deep-seated tissue structures. Since PBNs have a complex cross-section geometry, standard production methods, such as extrusion, fail, as the outer diameter is reduced further. This paper presents our first attempt to demonstrate a new manufacturing method for PBNs that employs thermal drawing technology. Experimental characterisation tests were performed for the 2.5 mm PBN and the new 1.3 mm thermally drawn (TD) PBN prototype described here. The results show that thermal drawing presents a significant advantage in miniaturising complex needle structures. However, the steering behaviour was affected due to the choice of material in this first attempt, a limitation which will be addressed in future work

    Fiber Bragg Gratings for Medical Applications and Future Challenges: A Review

    Full text link
    [EN] In the last decades, fiber Bragg gratings (FBGs) have become increasingly attractive to medical applications due to their unique properties such as small size, biocompatibility, immunity to electromagnetic interferences, high sensitivity and multiplexing capability. FBGs have been employed in the development of surgical tools, assistive devices, wearables, and biosensors, showing great potentialities for medical uses. This paper reviews the FBG-based measuring systems, their principle of work, and their applications in medicine and healthcare. Particular attention is given to sensing solutions for biomechanics, minimally invasive surgery, physiological monitoring, and medical biosensing. Strengths, weaknesses, open challenges, and future trends are also discussed to highlight how FBGs can meet the demands of next-generation medical devices and healthcare system.This work was supported in part by INAIL (the Italian National Institute for Insurance against Accident at Work), through the BRIC (Bando ricerche in collaborazione) 2018 SENSE-RISC (Sviluppo di abiti intelligENti Sensorizzati per prevenzione e mitigazione di Rischi per la SiCurezza dei lavoratori) Project under Grant ID10/2018, in part by the UCBM (Universita Campus Bio-Medico di Roma) under the University Strategic HOPE (HOspital to the PatiEnt) Project, in part by the EU Framework Program H2020-FETPROACT-2018-01 NeuHeart Project under Grant GA 824071, by FCT/MEC (Fundacao para a Ciencia e Tecnologia) under the Projects UIDB/50008/2020 - UIDP/50008/2020, and by REACT (Development of optical fiber solutions for Rehabilitation and e-Health applications) FCT-IT-LA scientific action.Lo Presti, D.; Massaroni, C.; Leitao, CSJ.; Domingues, MDF.; Sypabekova, M.; Barrera, D.; Floris, I.... (2020). Fiber Bragg Gratings for Medical Applications and Future Challenges: A Review. IEEE Access. 8:156863-156888. https://doi.org/10.1109/ACCESS.2020.3019138S156863156888
    corecore