1,717 research outputs found

    Imitating individualized facial expressions in a human-like avatar through a hybrid particle swarm optimization - tabu search algorithm

    Get PDF
    This thesis describes a machine learning method for automatically imitating a particular person\u27s facial expressions in a human-like avatar through a hybrid Particle Swarm Optimization - Tabu Search algorithm. The muscular structures of the facial expressions are measured by Ekman and Friesen\u27s Facial Action Coding System (FACS). Using a neutral face as a reference, the minute movements of the Action Units, used in FACS, are automatically tracked and mapped onto the avatar using a hybrid method. The hybrid algorithm is composed of Kennedy and Eberhart\u27s Particle Swarm Optimization algorithm (PSO) and Glover\u27s Tabu Search (TS). Distinguishable features portrayed on the avatar ensure a personalized, realistic imitation of the facial expressions. To evaluate the feasibility of using PSO-TS in this approach, a fundamental proof-of-concept test is employed on the system using the OGRE avatar. This method is analyzed in-depth to ensure its proper functionality and evaluate its performance compared to previous work

    Differential Evolution to Optimize Hidden Markov Models Training: Application to Facial Expression Recognition

    Get PDF
    The base system in this paper uses Hidden Markov Models (HMMs) to model dynamic relationships among facial features in facial behavior interpretation and understanding field. The input of HMMs is a new set of derived features from geometrical distances obtained from detected and automatically tracked facial points. Numerical data representation which is in the form of multi-time series is transformed to a symbolic representation in order to reduce dimensionality, extract the most pertinent information and give a meaningful representation to humans. The main problem of the use of HMMs is that the training is generally trapped in local minima, so we used the Differential Evolution (DE) algorithm to offer more diversity and so limit as much as possible the occurrence of stagnation. For this reason, this paper proposes to enhance HMM learning abilities by the use of DE as an optimization tool, instead of the classical Baum and Welch algorithm. Obtained results are compared against the traditional learning approach and significant improvements have been obtained.</p

    FMX (EEPIS FACIAL EXPRESSION MECHANISM EXPERIMENT): PENGENALAN EKSPRESI WAJAH MENGGUNAKAN NEURAL NETWORK BACKPROPAGATION

    Get PDF
    In the near future, it is expected that the robot can interact with humans. Communication itself has many varieties. Not only from word to word, but body language also be the medium. One of them is using facial expressions. Facial expression in human communication is always used to show human emotions. Whether it is happy, sad, angry, shocked, disappointed, or even relaxed? This final project focused on how to make robots that only consist of head, so it could make a variety facial expression like human beings. This Face Humanoid Robot divided into several subsystems. There are image processing subsystem, hardware subsystem and subsystem of controllers. In image processing subsystem, webcam is used for image data acquisition processed by a computer. This process needs Microsoft Visual C compiler for programming that has been installed with the functions of the Open Source Computer Vision Library (OpenCV). Image processing subsystem is used for recognizing human facial expressions. With image processing, it can be seen the pattern of an object. Backpropagation Neural Network is useful to recognize the object pattern. Subsystem hardware is a Humanoid Robot Face. Subsystem controller is a single microcontroller ATMega128 and a camera that can capture images at a distance of 50 to 120 cm. The process of running the robot is as follows. Images captured by a camera webcam. From the images that have been processed with image processing by a computer, human facial expression is obtained. Data results are sent to the subsystem controller via serial communications. Microcontroller subsystem hardware then ordered to make that facial expression. Result of this final project is all of the subsystems can be integrated to make the robot that can respond the form of human expression. The method used is simple but looks quite capable of recognizing human facial expression. Keyword: OpenCV, Neural Network BackPropagation, Humanoid Robo

    Feature Selection Using Firefly Optimization for Classification and Regression Models

    Get PDF
    In this research, we propose a variant of the Firefly Algorithm (FA) for discriminative feature selection in classification and regression models for supporting decision making processes using data-based learning methods. The FA variant employs Simulated Annealing (SA)-enhanced local and global promising solutions, chaotic-accelerated attractiveness parameters and diversion mechanisms of weak solutions to escape from the local optimum trap and mitigate the premature convergence problem in the original FA algorithm. A total of 29 classification and 11 regression benchmark data sets have been used to evaluate the efficiency of the proposed FA model. It shows statistically significant improvements over other state-of-the-art FA variants and classical search methods for diverse feature selection problems. In short, the proposed FA variant offers an effective method to identify optimal feature subsets in classification and regression models for supporting data-based decision making processes

    A Multi-Population FA for Automatic Facial Emotion Recognition

    Get PDF
    Automatic facial emotion recognition system is popular in various domains such as health care, surveillance and human-robot interaction. In this paper we present a novel multi-population FA for automatic facial emotion recognition. The overall system is equipped with horizontal vertical neighborhood local binary patterns (hvnLBP) for feature extraction, a novel multi-population FA for feature selection and diverse classifiers for emotion recognition. First, we extract features using hvnLBP, which are robust to illumination changes, scaling and rotation variations. Then, a novel FA variant is proposed to further select most important and emotion specific features. These selected features are used as input to the classifier to further classify seven basic emotions. The proposed system is evaluated with multiple facial expression datasets and also compared with other state-of-the-art models

    Intelligent facial emotion recognition using moth-firefly optimization

    Get PDF
    In this research, we propose a facial expression recognition system with a variant of evolutionary firefly algorithm for feature optimization. First of all, a modified Local Binary Pattern descriptor is proposed to produce an initial discriminative face representation. A variant of the firefly algorithm is proposed to perform feature optimization. The proposed evolutionary firefly algorithm exploits the spiral search behaviour of moths and attractiveness search actions of fireflies to mitigate premature convergence of the Levy-flight firefly algorithm (LFA) and the moth-flame optimization (MFO) algorithm. Specifically, it employs the logarithmic spiral search capability of the moths to increase local exploitation of the fireflies, whereas in comparison with the flames in MFO, the fireflies not only represent the best solutions identified by the moths but also act as the search agents guided by the attractiveness function to increase global exploration. Simulated Annealing embedded with Levy flights is also used to increase exploitation of the most promising solution. Diverse single and ensemble classifiers are implemented for the recognition of seven expressions. Evaluated with frontal-view images extracted from CK+, JAFFE, and MMI, and 45-degree multi-view and 90-degree side-view images from BU-3DFE and MMI, respectively, our system achieves a superior performance, and outperforms other state-of-the-art feature optimization methods and related facial expression recognition models by a significant margin

    A novel sketch based face recognition in unconstrained video for criminal investigation

    Get PDF
    Face recognition in video surveillance helps to identify an individual by comparing facial features of given photograph or sketch with a video for criminal investigations. Generally, face sketch is used by the police when suspect’s photo is not available. Manual matching of facial sketch with suspect’s image in a long video is tedious and time-consuming task. To overcome these drawbacks, this paper proposes an accurate face recognition technique to recognize a person based on his sketch in an unconstrained video surveillance. In the proposed method, surveillance video and sketch of suspect is taken as an input. Firstly, input video is converted into frames and summarized using the proposed quality indexed three step cross search algorithm. Next, faces are detected by proposed modified Viola-Jones algorithm. Then, necessary features are selected using the proposed salp-cat optimization algorithm. Finally, these features are fused with scale-invariant feature transform (SIFT) features and Euclidean distance is computed between feature vectors of sketch and each face in a video. Face from the video having lowest Euclidean distance with query sketch is considered as suspect’s face. The proposed method’s performance is analyzed on Chokepoint dataset and the system works efficiently with 89.02% of precision, 91.25% of recall and 90.13% of F-measure
    • …
    corecore